5 research outputs found

    An attempt to obtain Bi_{4}Ti_{3}O_{12}-PVC textured ceramics-polymer composites

    Full text link
    Bi_{4}Ti_{3}O_{12}-PVC composites were fabricated. Ceramics powders of bismuth titanate were prepared by the sol-gel method using bismuth nitrate pentahydrate Bi(NO_{3})_{3} \cdot 5H_{2}O and tetrabutyl titanate Ti(CH_{3}(CH_{2})_{3}O)_{4} as precursors. The Bi_{4}Ti_{3}O_{12}-PVC composites were fabricated from ceramics powders and polymer powders by hot-pressing method.Comment: 4 pages, 4 figure

    Modified PZT ceramics as a material that can be used in micromechatronics

    Get PDF
    Results on investigations of the PZT type ceramics with the following chemical composition: Pb0.94Sr0.06(Zr0.50 Ti0.50)0.99 Cr0.01O3 (PSZTC) which belongs to a group of multicomponent ceramic materials obtained on basis of the PZT type solid solution, are presented in this work. Ceramics PSZTC was obtained by a free sintering method under the following conditions: T sint = 1250 °C and t sint = 2 h. Ceramic compacts of specimens for the sintering process were made from the ceramic mass consisting of a mixture of the synthesized PSZTC powder and 3% polyvinyl alcohol while wet. The PSZTC ceramic specimens were subjected to poling by two methods: low temperature and high temperature. On the basis of the examinations made it has been found that the ceramics obtained belongs to ferroelectric-hard materials and that is why it may be used to build resonators, filters and ultrasonic transducers

    Otrzymywanie PZT domieszkowanego Mn do kompozytów ceramiczno-polimerowych

    No full text
    Lead zirconate titanate (PZT) ceramics, with general chemical formula Pb(Zr1-xTix)O3 are used in numerous piezo- and pyroelectric applications. In practice, PZT is rarely used in a chemical pure form. The dielectric, piezoelectric and pyroelectric properties of PZT can be modified by adding dopants to the ABO3-type PZT perovskite structure. Ceramics powders of manganese-doped lead zirconate titanate with composition Pb(Zr0.3Ti0.7)0.97Mn0.03O3 (PMZT) were prepared by the sol-gel method using: lead(II)acetate trihydrate, zirconium(IV)propoxide, titanium(IV)propoxide and manganese(II)acetate tetrahydrate as precursors. The PMZT-PVC composites were fabricated from PMZT and polymer powders by hot-pressing method.Ceramiczne roztwory stałe cyrkonianu tytanianu ołowiu (PZT) o wzorze ogólnym Pb(Zr1-xTix)O3 znajdują szerokie zastosowanie jako piezo- i piroelektryki. W praktyce czysty PZT jest rzadko używany. Właściwości piezoelektryczne i piroelektryczne PZT modyfikuje się poprzez dodawanie domieszek do struktury typu perowskitu ABO3. Ceramiczne proszki cyrkonianu tytanianu ołowiu domieszkowanego manganem o składzie Pb(Zr0;3Ti0;7)0;97Mn0;03O3 (PMZT) otrzymano metodą zolowo-żelową. Jako prekursorów użyto: octanu ołowiu, propanolanu cyrkonu, propanolanu tytanu i octanu manganu. Kompozyty ceramiczno-polimerowe PMZT-PVC otrzymano z proszku PMZT i proszku polimeru PVC metoda prasowania na gorąco

    Internal friction phenomena in composites based on PZT-type ferroelectric powder and ferrites

    No full text
    The aim of the work was to determine the phenomena of internal friction (mechanical losses) occurring in ferroelectric-ferromagnetic composites created based on PZT-type ferroelectric powder and ferrite. The composites were obtained using ceramic powders – multi-component PZT-type solid solutions with ferroelectric properties. Their magnetic component included zinc-nickel powder Ni0.64Zn0.36Fe2O4. 30 × 10 × 1 mm3 test specimens were obtained using free sintering. Temperature Q -1(T) and amplitude Q -1(ε) internal friction dependencies were determined. Wide high temperature maxima were observed with regard to the internal friction temperature dependencies obtained for the tested specimens. The conducted measurements of amplitude (isothermal) dependencies of internal friction Q -1(ε) for the tested composites have allowed for interpreting the previously observed maximum on the temperature dependencies of internal friction
    corecore