788 research outputs found

    Soliton X-junctions with controllable transmission

    Full text link
    We propose new planar X-junctions and multi-port devices written by spatial solitons, which are composed of two (or more) nonlinearly coupled components in Kerr-type media. Such devices have no radiation losses at a given wavelength. We demonstrate that, for the same relative angle between the channels of the X-junctions, one can vary the transmission coefficients into the output channels by adjusting the polarizations of multi-component solitons. We determine analytically the transmission properties and suggest two types of experimental embodiments of the proposed device.Comment: 3 pages, 2 figure

    Analytical solution of the dynamical spherical MIT bag

    Get PDF
    We prove that when the bag surface is allowed to move radially, the equations of motion derived from the MIT bag Lagrangian with massless quarks and a spherical boundary admit only one solution, which corresponds to a bag expanding at the speed of light. This result implies that some new physics ingredients, such as coupling to meson fields, are needed to make the dynamical bag a consistent model of hadrons.Comment: Revtex, no figures. Submitted to Journal of Physics

    Intensity limits for stationary and interacting multi-soliton complexes

    Full text link
    We obtain an accurate estimate for the peak intensities of multi-soliton complexes for a Kerr-type nonlinearity in the (1+1) - dimension problem. Using exact analytical solutions of the integrable set of nonlinear Schrodinger equations, we establish a rigorous relationship between the eigenvalues of incoherently-coupled fundamental solitons and the range of admissible intensities. A clear geometrical interpretation of this effect is given.Comment: 3 pages, 3 figure

    Relativistic confinement of neutral fermions with a trigonometric tangent potential

    Get PDF
    The problem of neutral fermions subject to a pseudoscalar potential is investigated. Apart from the solutions for E=±mc2E=\pm mc^{2}, the problem is mapped into the Sturm-Liouville equation. The case of a singular trigonometric tangent potential (∌tanÎłx\sim \mathrm{tan} \gamma x) is exactly solved and the complete set of solutions is discussed in some detail. It is revealed that this intrinsically relativistic and true confining potential is able to localize fermions into a region of space arbitrarily small without the menace of particle-antiparticle production.Comment: 12 page

    Study on the Prognosis of Tuberculous Meningitis Treated with Streptomycin in Children

    Get PDF
    ă“ăźè«–æ–‡ăŻć›œç«‹æƒ…ć ±ć­Šç ”ç©¶æ‰€ăźć­ŠèĄ“é›‘èȘŒć…Źé–‹æ”ŻæŽäș‹æ„­ă«ă‚ˆă‚Šé›»ć­ćŒ–ă•ă‚ŒăŸă—ăŸ

    Multisoliton complexes in a sea of radiation modes

    Full text link
    We derive exact analytical solutions describing multi-soliton complexes and their interactions on top of a multi-component background in media with self-focusing or self-defocusing Kerr-like nonlinearities. These results are illustrated by numerical examples which demonstrate soliton collisions and field decomposition between localized and radiation modes.Comment: 7 pages, 7 figure

    Relating pseudospin and spin symmetries through charge conjugation and chiral transformations: the case of the relativistic harmonic oscillator

    Get PDF
    We solve the generalized relativistic harmonic oscillator in 1+1 dimensions, i.e., including a linear pseudoscalar potential and quadratic scalar and vector potentials which have equal or opposite signs. We consider positive and negative quadratic potentials and discuss in detail their bound-state solutions for fermions and antifermions. The main features of these bound states are the same as the ones of the generalized three-dimensional relativistic harmonic oscillator bound states. The solutions found for zero pseudoscalar potential are related to the spin and pseudospin symmetry of the Dirac equation in 3+1 dimensions. We show how the charge conjugation and Îł5\gamma^5 chiral transformations relate the several spectra obtained and find that for massless particles the spin and pseudospin symmetry related problems have the same spectrum, but different spinor solutions. Finally, we establish a relation of the solutions found with single-particle states of nuclei described by relativistic mean-field theories with scalar, vector and isoscalar tensor interactions and discuss the conditions in which one may have both nucleon and antinucleon bound states.Comment: 33 pages, 10 figures, uses revtex macro

    Enhancement of Sm3+emission by SnO2nanocrystals in the silica matrix

    Get PDF
    Silica xerogels containing Sm3+ions and SnO2nanocrystals were prepared in a sol–gel process. The image of transmission electron microscopy (TEM) shows that the SnO2nanocrystals are dispersed in the silica matrix. The X-ray diffraction (XRD) of the sample confirms the tetragonal phase of SnO2. The xerogels containing SnO2nanocrystals and Sm3+ions display the characteristic emission of Sm3+ions (4G5/2 → 6HJ(J = 5/2, 7/2, 9/2)) at the excitation of 335 nm which energy corresponds to the energy gap of the SnO2nanocrystals, while no emission of Sm3+ions can be observed for the samples containing Sm3+ions. The enhancement of the Sm3+emission is probably due to the energy transfer from SnO2nanocrystals to Sm3+ions
    • 

    corecore