62 research outputs found

    A generic RNA-pulsed dendritic cell vaccine strategy for renal cell carcinoma

    Get PDF
    We present a generic dendritic cell (DC) vaccine strategy for patients with renal cell carcinoma (RCC) based on the use of RNA as a source of multiplex tumor-associated antigens (TAAs). Instead of preparing RNA from tumor tissue of each individual RCC patient, we propose to substitute RNA prepared from a well characterized highly immunogenic RCC cell line (RCC-26 tumor cells) as a generic source of TAAs for loading of DCs. We demonstrate here that efficient RNA transfer can be achieved using lipofection of immature DCs, which are subsequently matured with a cytokine cocktail to express high levels of MHC and costimulatory molecules as well as the chemokine receptor CCR7. Neither RNA itself nor the lipid component impacted on the phenotype or the cytokine secretion of mature DCs. Following RNA loading, DCs derived from HLA-A2-positive donors were able to activate effector-memory cytotoxic T lymphocytes (CTLs) specific for a TAA ligand expressed by the RCC-26 cell line. CTL responses to RNA-loaded DCs reached levels comparable to those stimulated directly by the RCC-26 tumor cells. Furthermore, DCs expressing tumor cell RNA primed naïve T cells, yielding T cell lines with cytotoxicity and cytokine secretion after contact with RCC tumor cells. RCC-26 cell lines are available as good manufacturing practice (GMP)-certified reagents enabling this source of RNA to be easily standardized and adapted for clinical testing. In addition, well defined immune monitoring tools, including the use of RNA expressing B cell lines, are available. Thus, this DC vaccine strategy can be directly compared with an ongoing gene therapy trial using genetically-engineered variants of the RCC-26 cell line as vaccines for RCC patients with metastatic disease

    Recombinant GPI-anchored TIMP-1 stimulates growth and migration of peritoneal mesothelial cells.

    Get PDF
    Mesothelial cells are critical in the pathogenesis of post-surgical intraabdominal adhesions as well as in the deterioration of the peritoneal membrane associated with long-term peritoneal dialysis. Mesothelial denudation is a pathophysiolocigally important finding in these processes. Matrix metalloproteinase (MMP) biology underlies aspects of mesothelial homeostasis as well as wound repair. The endogenous tissue inhibitors of metalloproteinases (TIMPs) moderate MMP activity. METHODS AND FINDING: By modifying human TIMP-1 through the addition of a glycosylphosphatidylinositol (GPI) anchor, a recombinant protein was generated that efficiently focuses TIMP-1 on the cell surface. Treatment of primary mesothelial cells with TIMP-1-GPI facilitates their mobilization and migration leading to a dramatic increase in the rate of wound experimental closure. Mesothelial cells treated with TIMP-1-GPI showed a dose dependent increase in cell proliferation, reduced secretion of MMP-2, MMP-9, TNF-α and urokinase-type plasminogen activator (uPA), but increased tissue plasminogen activator (t-PA). Treatment resulted in reduced expression and processing of latent TGF-β1. TIMP-1-GPI stimulated rapid and efficient in vitro wound closure. The agent enhanced mesothelial cell proliferation and migration and was bioactive in the nanogram range. The application of TIMP-1-GPI may represent a new approach for limiting or repairing damaged mesothelium

    Cord Blood Vα24-Vβ11+ Natural Killer T Cells Display a Th2-Chemokine Receptor Profile and Cytokine Responses

    Get PDF
    Background: The fetal immune system is characterized by a Th2 bias but it is unclear how the Th2 predominance is established. Natural killer T (NKT) cells are a rare subset of T cells with immune regulatory functions and are already activated in utero. To test the hypothesis that NKT cells are part of the regulatory network that sets the fetal Th2 predominance, percentages of Vα24(+)Vβ11(+) NKT cells expressing Th1/Th2-related chemokine receptors (CKR) were assessed in cord blood. Furthermore, IL-4 and IFN-γ secreting NKT cells were quantified within the single CKR(+) subsets. Results: Cord blood NKT cells expressed the Th2-related CCR4 and CCR8 at significantly higher frequencies compared to peripheral blood NKT cells from adults, while CXCR3+ and CCR5+ cord blood NKT cells (Th1-related) were present at lower percentages. Within CD4negCD8neg (DN) NKT cells, the frequency of IL-4 producing NKT cells was significantly higher in cord blood, while frequencies of IFN-γ secreting DN NKT cells tended to be lower. A further subanalysis showed that the higher percentage of IL-4 secreting DN NKT cells was restricted to CCR3+, CCR4+, CCR5+, CCR6+, CCR7+, CCR8+ and CXCR4+ DN subsets in cord blood. This resulted in significantly decreased IFN-γ /IL-4 ratios of CCR3+, CCR6+ and CCR8+ cord blood DN NKT cells. Sequencing of VA24AJ18 T cell receptor (TCR) transcripts in sorted cord blood Vα24Vβ11 cells confirmed the invariant TCR alpha-chain ruling out the possibility that these cells represent an unusual subset of conventional T cells. Conclusions: Despite the heterogeneity of cord blood NKT cells, we observed a clear Th2-bias at the phenotypic and functional level which was mainly found in the DN subset. Therefore, we speculate that NKT cells are important for the initiation and control of the fetal Th2 environment which is needed to maintain tolerance towards self-antigens as well as non-inherited maternal antigens

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Understand tolerogenic dendritic cells

    No full text

    A Lysine Residue at the C-Terminus of MHC Class I Ligands Correlates with Low C-Terminal Proteasomal Cleavage Probability

    No full text
    The majority of peptides presented by MHC class I result from proteasomal protein turnover. The specialized immunoproteasome, which is induced during inflammation, plays a major role in antigenic peptide generation. However, other cellular proteases can, either alone or together with the proteasome, contribute peptides to MHC class I loading non-canonically. We used an immunopeptidomics workflow combined with prediction software for proteasomal cleavage probabilities to analyze how inflammatory conditions affect the proteasomal processing of immune epitopes presented by A549 cells. The treatment of A549 cells with IFNγ enhanced the proteasomal cleavage probability of MHC class I ligands for both the constitutive proteasome and the immunoproteasome. Furthermore, IFNγ alters the contribution of the different HLA allotypes to the immunopeptidome. When we calculated the HLA allotype-specific proteasomal cleavage probabilities for MHC class I ligands, the peptides presented by HLA-A*30:01 showed characteristics hinting at a reduced C-terminal proteasomal cleavage probability independently of the type of proteasome. This was confirmed by HLA-A*30:01 ligands from the immune epitope database, which also showed this effect. Furthermore, two additional HLA allotypes, namely, HLA-A*03:01 and HLA-A*11:01, presented peptides with a markedly reduced C-terminal proteasomal cleavage probability. The peptides eluted from all three HLA allotypes shared a peptide binding motif with a C-terminal lysine residue, suggesting that this lysine residue impairs proteasome-dependent HLA ligand production and might, in turn, favor peptide generation by other cellular proteases
    corecore