12 research outputs found
p66Shc deficiency in the EÎĽ-TCL1 mouse model of chronic lymphocytic leukemia enhances leukemogenesis by altering the chemokine receptor landscape
The Shc family adaptor p66Shc acts as a negative regulator of proliferative and survival signals triggered by the B Cell Receptor and, by enhancing the production of reactive oxygen species, promotes oxidative stress-dependent apoptosis. Additionally, p66Shc controls the expression and function of chemokine receptors that regulate lymphocyte traffic. Chronic lymphocytic leukemia cells have a p66Shc expression defect which contributes to their extended survival and correlates with poor prognosis. We have analyzed the impact of p66Shc ablation on disease severity and progression in the mouse model of chronic lymphocytic leukemia EÎĽ-TCL1. We show that EÎĽ-TCL1/p66Shc-/- mice develop an aggressive disease that has an earlier onset, a higher incidence and leads to earlier death compared to EÎĽ-TCL1 mice. EÎĽ-TCL1/p66Shc-/- mice display substantial leukemic cell accumulation in both nodal and extranodal sites. The target organ selectivity correlates with an upregulation of chemokine receptors whose ligands are expressed therein. This also applies to chronic lymphocytic leukemia cells, where chemokine receptor expression and extent of organ infiltration were found to inversely correlate with their p66Shc expression levels. p66Shc expression declined with disease progression in EÎĽ-TCL1 mice and could be restored by treatment with the Bruton tyrosine kinase inhibitor Ibrutinib. Our results highlight p66Shc deficiency as an important factor in chronic lymphocytic leukemia progression and severity and underscore p66Shc expression as a relevant therapeutic target
p66Shc Deficiency in Chronic Lymphocytic Leukemia Promotes Chemokine Receptor Expression Through the ROS-Dependent Inhibition of NF-ÎşB
The microenvironment of lymphoid organs is central to the pathogenesis of chronic lymphocytic leukemia (CLL). Within it, tumor cells find a favourable niche to escape immunosurveillance and acquire pro-survival signals. We have previously reported that a CLL-associated defect in the expression of the pro-apoptotic and pro-oxidant adaptor p66Shc leads to enhanced homing to and accumulation of leukemic cells in the lymphoid microenvironment. The p66Shc deficiency-related impairment in intracellular reactive oxygen species (ROS) production in CLL cells is causally associated to the enhanced expression of the chemokine receptors CCR2, CXCR3 and CCR7, that promote leukemic cell homing to both lymphoid and non-lymphoid organs, suggesting the implication of a ROS-modulated transcription factor(s). Here we show that the activity of the ROS-responsive p65 subunit of the transcription factor NF-ÎşB was hampered in the CLL-derived cell line MEC-1 expressing a NF-ÎşB-luciferase reporter following treatment with H2O2. Similar results were obtained when intracellular ROS were generated by expression of p66Shc, but not of a ROS-defective mutant, in MEC-1 cells. NF-ÎşB activation was associated with increased expression of the chemokine receptors CCR2, CXCR3 and CCR7. Reconstitution of p66Shc in CLL cells normalized intracellular ROS and hampered NF-ÎşB activation, which led to a decrease in the expression of these homing receptors. Our data provide direct evidence that the p66Shc-deficiency-related ROS depletion in CLL cells concurs to NF-ÎşB hyperactivation and homing receptor overexpression, providing a mechanistic basis for the enhanced ability of these cells to accumulate in the pro-survival lymphoid niche
Heterozygous nonsense ARX mutation in a family highlights the complexity of clinical and molecular diagnosis in case of chromosomal and single gene disorder co-inheritance
Background: Corpus callosum agenesis (ACC) is one of the most frequent Central Nervous System (CNS) malformations. However, genetics underlying isolated forms is still poorly recognized. Here, we report on two female familial cases with partial ACC. The proband shows isolated partial ACC and a mild neurodevelopmental phenotype. A fetus from a previous interrupted pregnancy exhibited a complex phenotype including partial ACC and the occurrence of a de novo 17q12 microduplication, which was interpreted as probably disease-causing.
Methods: A trio-based clinical exome sequencing (CES) was performed.
Results: Clinical exome sequencing data analysis led to identifying a heterozygous nonsense variant (NM_139058.3:c.922G>T; NP_620689.1:p.Glu308Ter) in the aristaless related homeobox gene (ARX) in the proband, with a putative de novo occurrence, producing a hypothetical protein lacking two essential domains. Sanger analysis confirmed the wild-type status of both parents in different tissues, and disclosed the occurrence of the nonsense variant in the fetus of the interrupted pregnancy, suggesting a formerly unrecognized contribution of the ARX mutation to the fetus' phenotype and gonadal or gonadosomatic mosaicism in one of the parents.
Conclusion: This study describes the phenotype associated with a heterozygous loss of function variant in ARX. Moreover, it highlights the importance of investigating both chromosomal and genetic contributions in cases of complex syndromic phenotypes involving CNS
Hybrid immunity improves B cells and antibodies against SARS-CoV-2 variants
19nononeThe emergence of SARS-CoV-2 variants is jeopardizing the effectiveness of current vaccines and limiting the application of monoclonal antibody-based therapy for COVID-19 (refs. 1,2). Here we analysed the memory B cells of five naive and five convalescent people vaccinated with the BNT162b2 mRNA vaccine to investigate the nature of the B cell and antibody response at the single-cell level. Almost 6,000 cells were sorted, over 3,000 cells produced monoclonal antibodies against the spike protein and more than 400 cells neutralized the original SARS-CoV-2 virus first identified in Wuhan, China. The B.1.351 (Beta) and B.1.1.248 (Gamma) variants escaped almost 70% of these antibodies, while a much smaller portion was impacted by the B.1.1.7 (Alpha) and B.1.617.2 (Delta) variants. The overall loss of neutralization was always significantly higher in the antibodies from naive people. In part, this was due to the IGHV2-5;IGHJ4-1 germline, which was found only in people who were convalescent and generated potent and broadly neutralizing antibodies. Our data suggest that people who are seropositive following infection or primary vaccination will produce antibodies with increased potency and breadth and will be able to better control emerging SARS-CoV-2 variants.openAndreano E.; Paciello I.; Piccini G.; Manganaro N.; Pileri P.; Hyseni I.; Leonardi M.; Pantano E.; Abbiento V.; Benincasa L.; Giglioli G.; De Santi C.; Fabbiani M.; Rancan I.; Tumbarello M.; Montagnani F.; Sala C.; Montomoli E.; Rappuoli R.Andreano, E.; Paciello, I.; Piccini, G.; Manganaro, N.; Pileri, P.; Hyseni, I.; Leonardi, M.; Pantano, E.; Abbiento, V.; Benincasa, L.; Giglioli, G.; De Santi, C.; Fabbiani, M.; Rancan, I.; Tumbarello, M.; Montagnani, F.; Sala, C.; Montomoli, E.; Rappuoli, R
SARS-CoV-2 escape from a highly neutralizing COVID-19 convalescent plasma
To investigate the evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the immune population, we coincupi bated the authentic virus with a highly neutralizing plasma from a COVID-19 convalescent patient. The plasma fully neutralized the virus for seven passages, but, after 45 d, the deletion of F140 in the spike N-terminal domain (NTD) N3 loop led to partial breakthrough. At day 73, an E484K substitution in the receptor-binding domain (RBD) occurred, followed, at day 80, by an insertion in the NTD N5 loop containing a new glycan sequon, which generated a variant completely resistant to plasma neutralization. Computational modeling predicts that the deletion and insertion in loops N3 and N5 prevent binding of neutralizing antibodies. The recent emergence in the United Kingdom, South Africa, Brazil, and Japan of natural variants with similar changes suggests that SARS-CoV-2 has the potential to escape an effective immune response and that vaccines and antibodies able to control emerging variants should be developed
Structural insights of a highly potent pan-neutralizing SARS-CoV-2 human monoclonal antibody
International audienceAs the coronavirus disease 2019 (COVID-19) pandemic continues, there is a strong need for highly potent monoclonal antibodies (mAbs) that are resistant against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VoCs). Here, we evaluate the potency of the previously described mAb J08 against these variants using cell-based assays and delve into the molecular details of the binding interaction using cryoelectron microscopy (cryo-EM) and X-ray crystallography. We show that mAb J08 has low nanomolar affinity against most VoCs and binds high on the receptor binding domain (RBD) ridge, away from many VoC mutations. These findings further validate the phase II/III human clinical trial underway using mAb J08 as a monoclonal therapy
B cell analyses after SARS-CoV-2 mRNA third vaccination reveals a hybrid immunity like antibody response
The continuous evolution of SARS-CoV-2 generated highly mutated variants able to escape natural and vaccine-induced primary immunity. The administration of a third mRNA vaccine dose induces a secondary response with increased protection. Here we investigate the longitudinal evolution of the neutralizing antibody response in four donors after three mRNA doses at single-cell level. We sorted 4100 spike protein specific memory B cells identifying 350 neutralizing antibodies. The third dose increases the antibody neutralization potency and breadth against all SARS-CoV-2 variants as observed with hybrid immunity. However, the B cell repertoire generating this response is different. The increases of neutralizing antibody responses is largely due to the expansion of B cell germlines poorly represented after two doses, and the reduction of germlines predominant after primary immunization. Our data show that different immunization regimens induce specific molecular signatures which should be considered while designing new vaccines and immunization strategies