3 research outputs found

    Deficient endoplasmic reticulum-mitochondrial phosphatidylserine transfer causes liver disease

    Get PDF
    Non-alcoholic fatty liver is the most common liver disease worldwide. Here, we show that the mitochondrial protein mitofusin 2 (Mfn2) protects against liver disease. Reduced Mfn2 expression was detected in liver biopsies from patients with nonalcoholic steatohepatitis (NASH). Moreover, reduced Mfn2 levels were detected in mouse models of steatosis or NASH, and its re-expression in a NASH mouse model ameliorated the disease. Liver-specific ablation of Mfn2 in mice provoked inflammation, triglyceride accumulation, fibrosis, and liver cancer. We demonstrate that Mfn2 binds phosphatidylserine (PS) and can specifically extract PS into membrane domains, favoring PS transfer to mitochondria and mitochondrial phosphatidylethanolamine (PE) synthesis. Consequently, hepatic Mfn2 deficiency reduces PS transfer and phospholipid synthesis, leading to endoplasmic reticulum (ER) stress and the development of a NASH-like phenotype and liver cancer. Ablation of Mfn2 in liver reveals that disruption of ER-mitochondrial PS transfer is a new mechanism involved in the development of liver disease

    Plasma Energy-Balance Metabolites Discriminate Asymptomatic Patients with Peripheral Artery Disease

    No full text
    Peripheral artery disease (PAD) is a common disease affecting 20–25% of population over 60 years old. Early diagnosis is difficult because symptoms only become evident in advanced stages of the disease. Inflammation, impaired metabolism, and mitochondrial dysfunction predispose to PAD, which is normally associated with other highly prevalent and related conditions, such as diabetes, dyslipidemia, and hypertension. We have measured energy-balance-associated metabolite concentrations in the plasma of PAD patients segregated by the severity of the disease and in plasma of healthy volunteers using a quantitative and targeted metabolomic approach. We found relevant associations between several metabolites (3-hydroxybutirate, aconitate, (iso)citrate, glutamate, and serine) with markers of oxidative stress and inflammation. Metabolomic profiling also revealed that (iso)citrate and glutamate are metabolites with high ability to discriminate between healthy participants and PAD patients without symptoms. Collectively, our data suggest that metabolomics provide significant information on the pathogenesis of PAD and useful biomarkers for the diagnosis and assessment of progression
    corecore