8 research outputs found

    The Receptor Tyrosine Kinase FGFR4 Negatively Regulates NF-kappaB Signaling

    Get PDF
    NFκB signaling is of paramount importance in the regulation of apoptosis, proliferation, and inflammatory responses during human development and homeostasis, as well as in many human cancers. Receptor Tyrosine Kinases (RTKs), including the Fibroblast Growth Factor Receptors (FGFRs) are also important in development and disease. However, a direct relationship between growth factor signaling pathways and NFκB activation has not been previously described, although FGFs have been known to antagonize TNFα-induced apoptosis. assays. FGF19 stimulation of endogenous FGFR4 in TNFα-treated DU145 prostate cancer cells also leads to a decrease in IKKβ activity, concomitant reduction in NFκB nuclear localization, and reduced apoptosis. Microarray analysis demonstrates that FGF19 + TNFα treatment of DU145 cells, in comparison with TNFα alone, favors proliferative genes while downregulating genes involved in apoptotic responses and NFκB signaling.These results identify a compelling link between FGFR4 signaling and the NFκB pathway, and reveal that FGFR4 activation leads to a negative effect on NFκB signaling including an inhibitory effect on proapoptotic signaling. We anticipate that this interaction between an RTK and a component of NFκB signaling will not be limited to FGFR4 alone

    Monoubiquitination and Activity of the Paracaspase MALT1 Requires Glutamate 549 in the Dimerization Interface.

    Get PDF
    The mucosa-associated lymphoid tissue protein-1 (MALT1, also known as paracaspase) is a protease whose activity is essential for the activation of lymphocytes and the growth of cells derived from human diffuse large B-cell lymphomas of the activated B-cell subtype (ABC DLBCL). Crystallographic approaches have shown that MALT1 can form dimers via its protease domain, but why dimerization is relevant for the biological activity of MALT1 remains largely unknown. Using a molecular modeling approach, we predicted Glu 549 (E549) to be localized within the MALT1 dimer interface and thus potentially relevant. Experimental mutation of this residue into alanine (E549A) led to a complete impairment of MALT1 proteolytic activity. This correlated with an impaired capacity of the mutant to form dimers of the protease domain in vitro, and a reduced capacity to promote NF-κB activation and transcription of the growth-promoting cytokine interleukin-2 in antigen receptor-stimulated lymphocytes. Moreover, this mutant could not rescue the growth of ABC DLBCL cell lines upon MALT1 silencing. Interestingly, the MALT1 mutant E549A was unable to undergo monoubiquitination, which we identified previously as a critical step in MALT1 activation. Collectively, these findings suggest a model in which E549 at the dimerization interface is required for the formation of the enzymatically active, monoubiquitinated form of MALT1

    Regulation of NF-κB signaling by caspases and MALT1 paracaspase

    No full text
    Caspases are intracellular proteases that are best known for their function in apoptosis signaling. It has become evident that many caspases also function in other signaling pathways that propagate cell proliferation and inflammation, but studies on the inflammatory function of caspases have mainly been limited to caspase-1-mediated cytokine processing. Emerging evidence, however, indicates an important contribution of caspases as mediators or regulators of nuclear factor-κB (NF-κB) signaling, which plays a key role in inflammation and immunity. Much still needs to be learned about the mechanisms that govern the activation and regulation of NF-κB by caspases, and this review provides an update of this area. Whereas apoptosis signaling is dependent on the catalytic activity of caspases, they mainly act as scaffolding platforms for other signaling proteins in the case of NF-κB signaling. Caspase proteolytic activity, however, counteracts the pro-survival function of NF-κB by cleaving specific signaling molecules. A striking exception is the paracaspase mucosa-associated lymphoid tissue 1 (MALT1), whose adaptor and proteolytic activity are both needed to initiate a full blown NF-κB response in antigen-stimulated lymphocytes. Understanding the role of caspases and MALT1 in the regulation of NF-κB signaling is of high interest for therapeutic immunomodulation

    MicroRNA-mediated mechanisms of the cellular stress response in atherosclerosis

    No full text
    corecore