1,373 research outputs found

    Introduction to Graphic Medicine

    Get PDF
    This webinar, taught by Matthew Noe from the Lamar Soutter Library at UMass Medical School, will introduce the emerging field of graphic medicine, or, the use of comics in healthcare. We will begin with a brief overview of the field’s emergence, and then switch directions to highlight the role that comics can play in two key areas of librarianship: health literacy and medical education. The webinar will conclude with suggestions for collection development and programming to kickstart graphic medicine in your library

    Graphic Medicine in the Library: An Educational Outreach Program

    Get PDF
    Objectives: Graphic medicine refers to the discourse of healthcare by way of the medium of comics and is a growing field with far-reaching impact. The objective of this outreach program was to provide educational opportunity to librarians on building graphic medicine collections and the creation of related programming.Methods: The outreach program proceeded on several fronts over the course of a six-month period, beginning with a two-part webinar series targeted to librarians both in-and-out of the region. These webinars sought to provide background information on graphic medicine, materials to aid with collection development, including key title lists, and serve as brainstorming opportunities for programming, including potential partners. At the same time, outreach was conducted with libraries in the local region, seeking to build community ties and support for the creation of new collections and programming. The program, in this iteration, concluded by creating a series of book club kits, that target specific medical conditions and include graphic novels, suggested questions, further readings, and more. These kits are available to regional groups for borrowing, including libraries who may find them valuable as a trial before building a new collection

    A Giant Sand Injection Complex: The Upper Jurassic Hareelv Formation of East Greenland

    Get PDF
    A major intrusive sandstone complex of Late Jurassic age is spectacularly exposed in Jameson land, East Greenland. It is probably the largest in the World, and covers an area of 55x70 km with a thickness of 200–400 m, and forms the Upper Oxfordian–Volgian Hareelv Formation. The complex consists of black basinal mudstones and highly irregular sandstone bodies, dykes and sills. The sand was derived from collapse of the front of sandy shelf-margin wedges, which triggered hyperconcentrated to concentrated density flows, and deposited massive sands further down the slope, at the base-of-slope and in the basin. The sand of some flows was loaded into the slope muds while elsewhere it flowed in steep-sided gullies formed by retrogressive slumping of the slope muds. All sand bodies were liquefied subsequent to burial and the sand was intruded into the surrounding black compacted muds and mudstones. Intrusion took place repeatedly over a long time interval, in environments ranging from very shallow to relatively deep burial, and the primary sediment structures of the sands were generally lost during these processes. It is rarely possible to determine the degree of post-burial remobilization but it ranges from rather small-scale modifications to wholesale liquefaction and out-of-place intrusion of the sand over many tens of metres. Sandstone dykes and sills occur ubiquitously and were emplaced by all combinations of stoping and dilation. The intrusive sand bodies range in dimensions from centimetres to many hundreds of metres. Deposition took place during the most important Mesozoic rift event in East Greenland and the pervasive remobilization and liquefaction of all sand bodies in the Hareelv Formation is interpreted as having been caused mainly by cyclic earthquake shocks. Additional important factors were slope shear stress, build up of pore pressure due to loading, slumping, upwards movement of pore waters expelled from the compacting muds, and also possibly of biogenic and thermogenic gas. The Hareelv Formation is an excellent field analogue for deeply buried hydrocarbon reservoirs, which have been modified by remobilization and injection of the sands

    The Use and Efficacy of Comics in Healthcare: A Scoping Review in Graphic Medicine

    Get PDF
    Background: Graphic medicine is defined as the “interaction between the medium of comics and the discourse of healthcare”. We seek to understand the ways in which comics are currently being employed in healthcare settings and what effects, if any, these practices have on physician, patient, and their experiences and health outcomes. Methods: Our scoping review is following the six-stage methodology laid out by Arksey and O’Malley (2005) in order to map the field – an appropriate methodology, as graphic medicine is a relatively new field that thus far lacks clear boundaries. We built, tested, and conducted searches in six databases: (1) PubMed, (2) CINAHL, (3) SCOPUS, (4) ERIC, (5) Web of Science (Core), and (6) Google Scholar. Preliminary Findings: Search results netted 5,097 unique citations, which highlights a clear problem with current indexing of comics in medical databases, as at least 80% of the citations were in fact NOT comics at all. In-depth screening and analysis of relevant results is ongoing. Potential Impact: Graphic medicine shows potential as a tool in medical and patient education and may help bridge the health literacy gap. Next Steps: Our next steps include synthesis of relevant studies and ongoing hand-searching for results outside of typical scholarly publications. Questions for the MTL Community: How might you make use of comics in your practice and/or praxis

    Editorial: Platelets and Immune Responses During Thromboinflammation

    Get PDF
    The word thromboinflammation appeared in 2004 to describe the interactions and cooperation between platelets and neutrophils in the context of arterial in-stent restenosis (1). Almost two decades later, multiple sources of evidence clearly show that the interplay between thrombosis and inflammation involves several pathways and occurs in various pathophysiological situations such as sepsis, disseminated intravascular coagulation (DIC), stroke, cancer, stress and rheumatoid arthritis, among others. Thromboinflammation is driven by mutual interactions and reciprocal activation between endothelial cells, subendothelium, leukocytes, platelets, and the humoral innate immune system, involving the complement, coagulation, and fibrinolytic signaling cascades.Fil: Schattner, Mirta Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Jenne, Craig N.. University of Calgary; CanadáFil: Negrotto, Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Ho-Tin-Noe, Benoit. Universite de Paris; Franci

    Ein einfaches Verfahren zur Herstellung anellierter Thiophene

    Get PDF
    A simple method for the synthesis of fused thiophenes by reaction of agr-carboxymethyl substituted cyclic ketones withLawesson-reagent is described. Considerations concerning the reaction mechanism are given

    Acoustic Holograms for Bilateral Blood-Brain Barrier Opening in a Mouse Model

    Full text link
    [EN] Transcranial focused ultrasound (FUS) in conjunction with circulating microbubbles injection is the sole non-invasive technique that temporally and locally opens the blood-brain barrier (BBB), allowing targeted drug delivery into the central nervous system (CNS). However, single-element FUS technologies do not allow the simultaneous targeting of several brain structures with high-resolution, and multi-element devices are required to compensate the aberrations introduced by the skull. In this work, we present the first preclinical application of acoustic holograms to perform a bilateral BBB opening in two mirrored regions in mice. The system consisted of a single-element focused transducer working at 1.68 MHz, coupled to a 3D-printed acoustic hologram designed to produce two symmetric foci in anesthetized mice in vivo and, simultaneously, compensate the aberrations of the wavefront caused by the skull bones. T1-weighed MR images showed gadolinium extravasation at two symmetric quasi-spherical focal spots. By encoding time-reversed fields, holograms are capable of focusing acoustic energy with a resolution near the diffraction limit at multiple spots inside the skull of small preclinical animals. This work demonstrates the feasibility of hologram-assisted BBB opening for low-cost and highly-localized targeted drug delivery in the CNS in symmetric regions of separate hemispheres.This work was supported in part by the Spanish Ministry of Science, Innovation, and Universities (MICINN) through Grants "Juan de la Cierva -Incorporacion" IJC2018-037897-I, and PID2019-111436RB-C22, in part by the Agencia Valenciana de la Innovacio through Grants INNVAL10/19/016, INNCON/2021/8, and INNVA1/2020/92, in part by Generalitat Valenciana through Grants ACIF/2017/045, AICO/2020/268, and BEFPI/2019/075, and in part by the National Institutes of Health through Grants 5R01EB009041 and 5R01AG038961. Action co-financed by the European Union through the Programa Operativo del Fondo Europeo de Desarrollo Regional (FEDER) of the Comunitat Valenciana (IDIFEDER/2018/022 and IDIFEDER/2021/004)Jiménez-Gambín, S.; Jimenez, N.; Pouliopoulos, AN.; Benlloch Baviera, JM.; Konofagou, EE.; Camarena Femenia, F. (2022). Acoustic Holograms for Bilateral Blood-Brain Barrier Opening in a Mouse Model. IEEE Transactions on Biomedical Engineering. 69(4):1359-1368. https://doi.org/10.1109/TBME.2021.31155531359136869

    First in-vivo Demonstration of Bilateral Blood-Brain Barrier Opening Using Acoustic Holograms in Mice

    Full text link
    [EN] Focused ultrasound (FUS) with microbubbles allows for non-invasive targeted drug delivery into the central nervous system (CNS) by temporally and locally disrupting the bloodbrain barrier (BBB). However, current FUS technologies are not able to simultaneously target several brain structures. In this work, we open the BBB in two regions in a murine brain using a single-element transducer with a coupled 3D-printed holographic lens, which is designed to simultaneously create two symmetric foci in anesthetized mice in vivo. The proposed approach shows many advantages: (1) simple and low-cost; (2) correction of aberrations due to skull and water cone; and (3) multiple BBB opening (BBBO) locations with only one sonication, becoming a time- and cost-effective therapeutic system for neurological diseases. For the in-vivo experiment, contrast-enhanced, T1- weighted MRI scan was conducted following BBBO, showing gadolinium extravasation at two symmetric focal spots. The two BBBO regions were separated by 3.0 +- 0.7 mm (n=5 mice) compared to 5.3 mm in full-wave simulations. This work shows the capability of bifocal ultrasound generation in separate animals using a unique uCT scan. A bilateral BBBO was achieved with a single sonication using a holographic lens in mice, thus improving the efficiency and defining a new approach for several neurodegenerative diseases targeting symmetric brain structures, e.g. hippocampus, putamen or caudate. This study demonstrates the feasibility of hologram-assisted BBBO for targeted drug delivery in the CNS in symmetric regions in separate hemispheres.This research has been supported by the Spanish Ministry of Science, Innovation and Universities through grants Juan de la Cierva - Incorporacion (IJC2018-037897-I) and PID2019-111436RB-C22, by the Agencia Valenciana de la Innovación through grant INNVAL10/19/016, by Generalitat Valenciana through grants No. ACIF/2017/045 and BEFPI/2019/075, and by the National Institutes of Health through grants 5R01EB009041 and 5R01AG038961. Action co-financed by the European Union through the Programa Operativo del Fondo Europeo de Desarrollo Regional (FEDER) of the Comunitat Valenciana 2014-2020 (IDIFEDER/2018/022).Jiménez-Gambín, S.; Jimenez, N.; Benlloch Baviera, JM.; Camarena Femenia, F.; Pouliopoulos, AN.; Konofagou, EE. (2020). First in-vivo Demonstration of Bilateral Blood-Brain Barrier Opening Using Acoustic Holograms in Mice. IEEE. 1-4. https://doi.org/10.1109/IUS46767.2020.9251487S1
    • …
    corecore