15 research outputs found

    Small mammal communities of restored and natural wetlands in West Virginia

    Get PDF
    Wetland restoration is commonly practiced as part of conservation programs or wetland mitigation, which attempts to offset human-created losses of natural wetlands. However, because of the intrinsic and human-derived value of wetlands, it is critical to determine whether these wetlands truly act similarly to natural wetlands. One role of wetlands is to provide habitat for a diverse array of wildlife species. Small mammals are often overlooked taxa in wetland restoration efforts. However, they are essential to the wetland system because they influence vegetation and are prey for higher trophic level wildlife. I discuss considerations of restored wetlands, wildlife responses to these wetlands, and the role of small mammals in wetlands in Chapter 1. In Chapter 2, I devise a study to determine whether small mammal communities are similar in restored and natural wetlands. I assess apparent abundance, occupancy, relative density, mass, diversity, richness, evenness, and community composition of small mammal communities from 14 restored wetlands and 12 natural wetlands in West Virginia, USA, sampled from June–August of 2020 and 2021. Over 10,060 trap nights, I captured deer mice (Peromyscus maniculatus), white-footed mice (Peromyscus leucopus), meadow voles (Microtus pennsylvanicus), northern short-tailed shrews (Blarina brevicauda), meadow jumping mice (Zapus hudsonius), and eastern chipmunks (Tamias striatus) at both wetland types, and woodland jumping mice (Napaeozapus insignis), masked shrews (Sorex cinereus), and one southern flying squirrel (Glaucomys volans) at exclusively natural wetlands. I found all aspects to be similar between wetland types, apart from apparent abundance of deer mice, which was higher in natural wetlands (P In chapter 3, I determine the features of restored wetlands that most affect small mammal communities. Specifically, I examined the effects of age and environmental variables in 14 restored wetlands spanning the three ecoregions in West Virginia. I determined the apparent abundance of deer mice (P = 0.01), white-footed mice (Peromyscus leucopus) (

    Do Mitigated Wetlands Support Similar Small Mammal Communities as Natural Wetlands?

    Get PDF
    Wetlands provide many ecosystem services and play an important ecological role in wildlife communities. Although wetland mitigation is a standard tool to combat losses to natural wetlands, it is essential to understand if mitigated wetlands are truly replacing natural wetlands in their full capacity. Because one important role of wetlands is to provide habitat for wildlife communities, it is important to determine if these created or restored wetlands can foster a wildlife community that is similar to natural wetlands. One understudied taxa in the realm of wetland mitigation research is small mammals. Our objectives are to examine community composition, occupancy, abundance, species diversity, species richness, and species evenness of small mammals at mitigated and natural wetlands to determine if there exists a difference between the two types of wetlands. To conduct this research, we are using Sherman traps for a capture-mark-recapture study on small mammals at mitigated and natural wetlands that are paired by similarities in ecoregion, elevation, geology, and wetland classification. In 2020, ten wetland sites were sampled with a total of 3,875 trap nights and 249 captures. Preliminary data analyses show Peromyscus spp. to be more abundant in natural wetlands than mitigated wetlands, and species richness between the two wetland types not to be statistically different. Results will determine if mitigated wetlands are successful in terms of providing habitat for small mammal communities, and in turn will contribute to whether current wetland mitigation is truly fulfilling its intended purpose. These findings could inform future management decisions

    Obligations of Researchers and Managers to Respect Wetlands: Practical Solutions to Minimizing Field Monitoring Impacts

    Get PDF
    Research and field monitoring can disturb wetland integrity. Adoption of ethical field practices is needed to limit monitoring induced stressors such as trampling, non-native seed and invertebrate dispersal, and disease and fungal spread. We identify a linear pathway of deterioration highlighting stressors that can progress to cumulative impacts, consequences, and losses at the site scale. The first step to minimize disturbance is to assess and classify the current ecosystem quality. We present a tiered framework for wetland classification and link preventative measures to the wetland tier. Preventative measures are recommended at various intensities respective to the wetland tier, with higher tiered wetlands requiring more intense preventative measures. In addition, preventative measures vary by time of implementation (before, during, and after the wetland visit) to mitigate impacts at various temporal scales. The framework is designed to increase transparency of field monitoring impacts and to promote the adoption of preventative measures. Implementing preventative measures can build accountability and foster a greater appreciation for our roles as researchers and managers in protecting wetlands

    Association of Childhood Economic Hardship with Adult Height and Adult Adiposity among Hispanics/Latinos. The HCHS/SOL Socio-Cultural Ancillary Study

    Get PDF
    The study examined the association of childhood and current economic hardship with anthropometric indices in Hispanic/Latino adults, using data from the HCHS/SOL Socio-cultural ancillary study (N = 5,084), a community-based study of Hispanic/Latinos living in four urban areas (Bronx, NY, Chicago, IL, Miami, FL, and San Diego, CA). Childhood economic hardship was defined as having experienced a period of time when one’s family had trouble paying for basic needs (e.g., food, housing), and when this economic hardship occurred: between 0–12, 13–18 years old, or throughout both of those times. Current economic hardship was defined as experiencing trouble paying for basic needs during the past 12 months. Anthropometry included height, body mass index (BMI), waist circumference (WC), and percentage body fat (%BF). Complex survey linear regression models were used to test the associations of childhood economic hardship with adult anthropometric indices, adjusting for potential confounders (e.g., age, sex, Hispanic background). Childhood economic hardship varied by Hispanic background, place of birth, and adult socio-economic status. Childhood economic hardship during both periods, childhood and adolescence, was associated with shorter height. Childhood economic hardship was associated with greater adiposity among US born individuals only. Current economic hardship was significantly associated with all three measures of adiposity (BMI, WC, %BF). These findings suggest that previous periods of childhood economic hardship appear to influence adult height more than adiposity, whereas current economic hardship may be a better determinant of adult adiposity in Hispanics

    Restored and Natural Wetland Small Mammal Communities in West Virginia, USA

    No full text
    Wetland restoration is a common practice, and, in many cases, it is for mitigation to offset losses of natural wetlands due to human interference. Researchers commonly compare bird, amphibian, and reptile communities between these wetlands and natural wetlands but overlook small mammals. However, terrestrial small mammals are essential to consider as they serve a fundamental role in the ecosystem as seed dispersers and prey for larger wildlife. We conducted small mammal trapping on 26 wetlands (n = 14 restored, n = 12 natural) in West Virginia, USA, in the summers of 2020 and 2021 to obtain and compare community metrics between wetland types. We found that mass, occupancy probability, and community composition were similar between restored and natural wetlands. However, the apparent abundance of deer mice (Peromyscus maniculatus) was higher in natural wetlands (p < 0.001). Because we captured the three rarest species exclusively in natural wetlands, the ability of restored wetlands to provide an adequate habitat for rare or wetland-obligate species may be biologically significant. Restored wetlands mainly offer sufficient habitat for small mammal communities, but apparent abundance in restored wetlands may differ from natural wetlands depending on species

    Restored and Natural Wetland Small Mammal Communities in West Virginia, USA

    No full text
    Wetland restoration is a common practice, and, in many cases, it is for mitigation to offset losses of natural wetlands due to human interference. Researchers commonly compare bird, amphibian, and reptile communities between these wetlands and natural wetlands but overlook small mammals. However, terrestrial small mammals are essential to consider as they serve a fundamental role in the ecosystem as seed dispersers and prey for larger wildlife. We conducted small mammal trapping on 26 wetlands (n = 14 restored, n = 12 natural) in West Virginia, USA, in the summers of 2020 and 2021 to obtain and compare community metrics between wetland types. We found that mass, occupancy probability, and community composition were similar between restored and natural wetlands. However, the apparent abundance of deer mice (Peromyscus maniculatus) was higher in natural wetlands (p &lt; 0.001). Because we captured the three rarest species exclusively in natural wetlands, the ability of restored wetlands to provide an adequate habitat for rare or wetland-obligate species may be biologically significant. Restored wetlands mainly offer sufficient habitat for small mammal communities, but apparent abundance in restored wetlands may differ from natural wetlands depending on species

    Obligations of Researchers and Managers to Respect Wetlands: Practical Solutions to Minimizing Field Monitoring Impacts

    No full text
    Research and field monitoring can disturb wetland integrity. Adoption of ethical field practices is needed to limit monitoring induced stressors such as trampling, non-native seed and invertebrate dispersal, and disease and fungal spread. We identify a linear pathway of deterioration highlighting stressors that can progress to cumulative impacts, consequences, and losses at the site scale. The first step to minimize disturbance is to assess and classify the current ecosystem quality. We present a tiered framework for wetland classification and link preventative measures to the wetland tier. Preventative measures are recommended at various intensities respective to the wetland tier, with higher tiered wetlands requiring more intense preventative measures. In addition, preventative measures vary by time of implementation (before, during, and after the wetland visit) to mitigate impacts at various temporal scales. The framework is designed to increase transparency of field monitoring impacts and to promote the adoption of preventative measures. Implementing preventative measures can build accountability and foster a greater appreciation for our roles as researchers and managers in protecting wetlands

    Urine Bacterial Community Convergence through Fertilizer Production: Storage, Pasteurization, and Struvite Precipitation

    No full text
    Source-separated human urine was collected from six public events to study the impact of urine processing and storage on bacterial community composition and viability. Illumina 16S rRNA gene sequencing revealed a complex community of bacteria in fresh urine that differed across collection events. Despite the harsh chemical conditions of stored urine (pH > 9 and total ammonia nitrogen > 4000 mg N/L), bacteria consistently grew to 5 ± 2 × 10<sup>8</sup> cells/mL. Storing hydrolyzed urine for any amount of time significantly reduced the number of operational taxonomic units (OTUs) to 130 ± 70, increased Pielou evenness to 0.60 ± 0.06, and produced communities dominated by <i>Clostridiales</i> and <i>Lactobacillales</i>. After 80 days of storage, all six urine samples from different starting materials converged to these characteristics. Urine pasteurization or struvite precipitation did not change the microbial community, even when pasteurized urine was stored for an additional 70 days. Pasteurization decreased metabolic activity by 50 ± 10% and additional storage after pasteurization did not lead to recovery of metabolic activity. Urine-derived fertilizers consistently contained 16S rRNA genes belonging to Tissierella, Erysipelothrix, Atopostipes, Bacteroides, and many <i>Clostridiales</i> OTUs; additional experiments must determine whether pathogenic species are present, responsible for observed metabolic activity, or regrow when applied
    corecore