511 research outputs found

    Torréfaction du bois et de ses constituants : expériences et modélisation des rendements en matiÚres volatiles

    Get PDF
    Actuellement, l’industrialisation de la torrĂ©faction de biomasse se heurte notamment Ă  un manque de connaissances de la nature et de la quantitĂ© des matiĂšres volatiles produites en fonction des conditions opĂ©ratoires et de la matiĂšre premiĂšre. L’objectif de ces travaux est donc de mieux comprendre comment s’opĂšre la torrĂ©faction de la biomasse, en se concentrant sur l’étude de la perte de masse du solide et des rendements en matiĂšres volatiles. La torrĂ©faction est considĂ©rĂ©e Ă  partir de bois sec, sous atmosphĂšre inerte et suivant un palier Ă  une tempĂ©rature comprise entre 200°C et 300°C. Lors d’une Ă©tude expĂ©rimentale, du hĂȘtre et ses constituants, Ă  savoir cellulose, xylane et lignine, ont Ă©tĂ© torrĂ©fiĂ©s, en rĂ©gime chimique, dans une thermobalance et dans un pilote de torrĂ©faction Ă  Ă©chelle laboratoire. Le bilan matiĂšre boucle entre 97% et 104%. Les principales matiĂšres volatiles Ă©mises par la torrĂ©faction de ce bois sont l’eau, le formaldĂ©hyde, l’acide acĂ©tique et le CO2. De l’acide formique, du CO, du mĂ©thanol et du furfural sont aussi mesurĂ©s en quantitĂ© moindre. Certaines de ces espĂšces ne sont pas produites par tous les constituants du hĂȘtre. Il semble en particulier que l’acide acĂ©tique soit produit Ă  partir de la dĂ©gradation des acĂ©tates contenus dans les hĂ©micelluloses. Par ailleurs, il apparaĂźt en premiĂšre approximation que la transformation peut ĂȘtre correctement reprĂ©sentĂ©e par la loi d’additivitĂ© jusqu’à 250°C. Cela n’est plus le cas Ă  280°C et 300°C, du fait d’interactions entre la cellulose et les deux autres constituants du bois. Celles-ci ralentissent la vitesse de torrĂ©faction de la cellulose. A partir de ces rĂ©sultats expĂ©rimentaux, a Ă©tĂ© dĂ©veloppĂ© dans ces travaux un modĂšle de torrĂ©faction du bois, basĂ© sur la superposition de « sous-modĂšles » dĂ©crivant chacun la torrĂ©faction d’un constituant du bois. Ce modĂšle, qui prĂ©sente comme originalitĂ© de prĂ©voir en fonction de la proportion du bois en cellulose/hĂ©micelluloses/lignine Ă  la fois le rendement en solide et en huit espĂšces volatiles, et de prendre en compte les interactions Ă  l’aide d’un facteur empirique, a Ă©tĂ© validĂ© sur les expĂ©riences de torrĂ©faction du hĂȘtre entre 220°C et 300°C. Son utilisation a mis en Ă©vidence l’influence significative des contenus en hĂ©micelluloses et cellulose sur les rendements en produits de la torrĂ©faction. ABSTRACT : The industrialization of the biomass torrefaction process requires better knowledge of the volatile species release versus operating conditions and feedstock. In this context, the present work aimed at studying solid mass loss and volatile species yields during biomass torrefaction. This transformation was considered on dry wood, at a temperature plateau between 200°C and 300°C and under inert atmosphere. First, torrefaction experiments were conducted under chemical regime on beechwood and its constituents – cellulose, lignin and hemicelluloses – in a thermobalance and in a lab-scale device. The mass balance closure was achieved with values ranging from 97 and 104%. The main volatile species measured were water, formaldehyde, acetic acid and CO2. Smaller amounts of methanol, CO, formic acid and furfural were also quantified. All those gas species were not produced by the three biomass constituents. In particular acetic acid seems to be produced by the degradation of the acetate groups contained in hemicelluloses. The results showed that in a first approximation torrefaction can be described by the additive law up to 250°C. But this law is not valid at 280°C and 300°C because of interactions between cellulose and the two other wood constituents. These interactions lead to a decrease in the torrefaction rate of cellulose. Based on these experimental results, a model of wood torrefaction was developed. It consists in the superposition of “sub-models” describing the torrefaction of each wood constituent. The originality of this model lies in its ability to predict both solid yield and eight volatile species yields depending on cellulose/hemicellulose/lignin wood composition, and to take into account interactions by means of an empirical factor. It was validated on beechwood torrefaction experiments between 220°C and 300°C. Finally, this model highlighted the significant influence of the proportion of hemicellulose and cellulose on torrefaction product yields

    La difonctionnalisation d’énamides en utilisant des dĂ©rivĂ©s d’iode (III) hypervalent

    Get PDF
    Hypervalent iodine compounds such as (diacetoxyiodo)benzene (PIDA) are non-toxic and mild reagents that can behave in similar fashion to transition-metal complexes. Indeed, around the central iodine atom, ligands can be exchanged and then transferred through a formal reductive elimination. Following this strategy, halides can be used as ‘ligands’, in which case an umpolung of the salt can occur to give birth to electrophilic halogen species. Using LiBr, ethanol and PIDA, a variety of enamides underwent a regioselective ethoxybromination with high yields, short reaction time and good to excellent diastereoselectivity. One of the main interests of this reaction lies in the use of a cheap and widely available bromide salt (LiBr) to generate electrophilic halogen species by umpolung. Moreover, despite the oxidative nature of the reaction conditions, a wide scope of functional groups (olefins, esters, alcohols
) is tolerated. This reaction provides α-bromo-hemiaminals which are highly versatile synthons. For instance, various nucleophiles can be incorporated on the hemiaminal moeity and then engaged in further transformations. The development of an asymmetric variant of this transformation using chiral pool or chiral hypervalent iodine was unsucceful. This methodoly has been extended to the umpolung of other salts as chlorine with moderate to good yields (from 36% to 86%) and a moderate to very good diastereoselectivity (from 55/45 to 92/8) with a short reaction time (30 minutes). Mechanistic investigation for both reactions has been performed and an ionic parthway has been priviledge. The introduction of fluorine as an electrophile was not possible according to the litterature.Finally, the last halide, iodine can be tansfered and an ethoxyiodation reaction is under optimisation. Concerning the pseudo-halides, we devot a special attention to azides. Two methodologies has been set up : a diazidation reaction which yields are moderate (betwwen 20% and 52%), short reaction times (around 1 h) and moderate to good diastereoselectivity ratios (between 75/25 and 90/10) and an oxyamination reaction whiwh shows to be much more efficient with moderate to very high yields (from 31% to 95%), short reaction times (around 2 h), excellent diastereoselectivity ratio (superior to67/33). These two gathered reactions represent a useful tool for the introduction of a nitrogen. For the diazidation reaction, the intermediatories seem to be radicals whereas for the oxyamination reaction probably ionic species. . Thus, synthetic tools have been developped during this thesis for the difunctionnalisation of enamides by hypervalent iodine and particulary introduction of halides and azidesLors de ce travail de thĂšse qui visait Ă  dĂ©velopper une mĂ©thode gĂ©nĂ©rale d’introduction d’halogĂ©nures et de pseudo-halogĂ©nures en se basant sur l’utilisation de rĂ©actifs d’iode hypervalent en tant que promoteurs d’umpolung, diverses avancĂ©es ont pu ĂȘtre accomplies. Tout d’abord, une rĂ©action d'alkoxybromation rĂ©giosĂ©lective mettant en jeu des sels de bromure et du PIDA a Ă©tĂ© mise au point. Un des intĂ©rĂȘts de cette rĂ©action rĂ©side dans l'utilisation de LiBr peu coĂ»teux comme source d'halogĂšne Ă©lectrophile (par inversion de polaritĂ© : umpolung). En outre, l'introduction de deux groupements de maniĂšre chimio- et rĂ©giosĂ©lective est possible sans recourir Ă  l'utilisation d’un catalyseur mĂ©tallique. Une large gamme d'Ă©namides a Ă©tĂ© testĂ©e et les rendements sont gĂ©nĂ©ralement excellents (au dessus de 75 %) et les rĂ©actions rapides (moins d’une heure). En outre, la diastĂ©rĂ©osĂ©lectivitĂ© oscille entre modĂ©rĂ©e et excellente. Ces produits Ă©thoxybromĂ©s se sont aussi montrĂ©s trĂšs polyvalents et permettent l’accĂšs Ă  de nombreux motifs structuraux. Une version asymĂ©trique de cette rĂ©action en faisant intervenir des dĂ©rivĂ©s d’iode hypervalent chiraux n’a pas Ă©tĂ© couronnĂ©e de succĂšs tout comme l’introduction de copules chirales. Le but initial Ă©tait de mettre au point une mĂ©thode gĂ©nĂ©rale de difonctionnalisation d’énamides avec l’insertion d’halogĂ©nures. C’est pourquoi, notre stratĂ©gie a ensuite Ă©tĂ© Ă©tendue au chlore et une rĂ©action d’éthoxychloration a Ă©tĂ© dĂ©veloppĂ©e avec des rendements moyens Ă  trĂšs bons (de 36% Ă  86%) un temps de rĂ©action rapide (gĂ©nĂ©ralement autour de 30 minutes) et une diastĂ©rĂ©osĂ©lectivitĂ© moyenne Ă  trĂšs bonne (de 55/45 Ă  92/8). Les deux rĂ©actions d’éthoxybromation et d’éthoxychloration ont fait l’objet d’une investigation mĂ©canistique (notamment par spectromĂ©trie de masse) et il semblerait que le mĂ©canisme soit ionique. Nous avons alors voulu appliquer cette mĂ©thodologie au fluor, Ă©lĂ©ment dont l’introduction sĂ©lective sur un substrat est rarement triviale. En accord avec la littĂ©rature, nous avons conclu que le fluor ne pouvait ĂȘtre transfĂ©rĂ© directement en tant qu’électrophile. Enfin, une version d’éthoxyiodation a Ă©tĂ© validĂ©e et est en cours d’optimisation au laboratoire. Concernant les pseudo-halogĂ©nures, nous nous sommes uniquement intĂ©ressĂ©s aux azotures. Ayant rĂ©alisĂ© qu’une rĂ©action d’éthoxyazidation ne serait pas possible, une Ă©tude poussĂ©e des diffĂ©rents paramĂštres rĂ©actionnels adossĂ©e Ă  la comprĂ©hension des mĂ©canismes mis en jeu a Ă©tĂ© entreprise. Deux mĂ©thodologies ont alors pu ĂȘtre mises au point : une rĂ©action de diazidation dont les rendements sont modĂ©rĂ©s ( entre 20% et 52%), les temps de rĂ©action courts (environ 1 h) et des diastĂ©rĂ©osĂ©lectivitĂ©s moyennes Ă  bonnes (entre 75/25 et 90/10) ainsi qu’une rĂ©action d’oxyamination qui se montre bien plus efficace avec des rendements moyens Ă  trĂšs bons (de 31% Ă  95%), des temps de rĂ©action assez rapides (autour de 2 h), des diastĂ©rĂ©osĂ©lectivitĂ©s souvent excellentes (supĂ©rieures Ă  67/33) et un champ d’application bien plus large (SchĂ©ma 245). Ces deux mĂ©thodes rĂ©unies reprĂ©sentent un outil utile pour l’obtention de composĂ©s Ă  la fois azotĂ©s et azidĂ©s. Dans ce cas, les intermĂ©diaires rĂ©actionnels semblent ĂȘtre radicalaires mĂȘme si des Ă©tudes complĂ©mentaires restent Ă  effectuer.L’intĂ©rĂȘt synthĂ©tique de ces deux types de composĂ©s a aussi fait l’objet de diverses Ă©tudes. Si la rĂ©duction du groupement azido en amine n’a pas pu ĂȘtre systĂ©matiquement accomplie, des rĂ©actions de cyclisation d’Huisgen sur les produits diazidĂ©s ont cependant fonctionnĂ© (les produits oxyaminĂ©s semblant trop encombrĂ©s stĂ©riquement). Quant au groupement TEMPO il a notamment pu ĂȘtre oxydĂ© en cĂ©tone. Ainsi, des outils mĂ©thodologiques ont Ă©tĂ© dĂ©veloppĂ©s lors de cette thĂšse, pour la difonctionnalisation oxydante d’énamides par des dĂ©rivĂ©s d’iode (III) hypervalent et en particulier, l’introduction d’halogĂ©nures et d’azotures

    Torréfaction du bois et de ses constituants (expériences et modélisation des rendements en matiÚres volatiles)

    Get PDF
    Actuellement, l industrialisation de la torrĂ©faction de biomasse se heurte notamment Ă  un manque de connaissances de la nature et de la quantitĂ© des matiĂšres volatiles produites en fonction des conditions opĂ©ratoires et de la matiĂšre premiĂšre. L objectif de ces travaux est donc de mieux comprendre comment s opĂšre la torrĂ©faction de la biomasse, en se concentrant sur l Ă©tude de la perte de masse du solide et des rendements en matiĂšres volatiles. La torrĂ©faction est considĂ©rĂ©e Ă  partir de bois sec, sous atmosphĂšre inerte et suivant un palier Ă  une tempĂ©rature comprise entre 200C et 300C. Lors d une Ă©tude expĂ©rimentale, du hĂȘtre et ses constituants, Ă  savoir cellulose, xylane et lignine, ont Ă©tĂ© torrĂ©fiĂ©s, en rĂ©gime chimique, dans une thermobalance et dans un pilote de torrĂ©faction Ă  Ă©chelle laboratoire. Le bilan matiĂšre boucle entre 97% et 104%. Les principales matiĂšres volatiles Ă©mises par la torrĂ©faction de ce bois sont l eau, le formaldĂ©hyde, l acide acĂ©tique et le CO2. De l acide formique, du CO, du mĂ©thanol et du furfural sont aussi mesurĂ©s en quantitĂ© moindre. Certaines de ces espĂšces ne sont pas produites par tous les constituants du hĂȘtre. Il semble en particulier que l acide acĂ©tique soit produit Ă  partir de la dĂ©gradation des acĂ©tates contenus dans les hĂ©micelluloses. Par ailleurs, il apparaĂźt en premiĂšre approximation que la transformation peut ĂȘtre correctement reprĂ©sentĂ©e par la loi d additivitĂ© jusqu Ă  250C. Cela n est plus le cas Ă  280C et 300C, du fait d interactions entre la cellulose et les deux autres constituants du bois. Celles-ci ralentissent la vitesse de torrĂ©faction de la cellulose. A partir de ces rĂ©sultats expĂ©rimentaux, a Ă©tĂ© dĂ©veloppĂ© dans ces travaux un modĂšle de torrĂ©faction du bois, basĂ© sur la superposition de sous-modĂšles dĂ©crivant chacun la torrĂ©faction d un constituant du bois. Ce modĂšle, qui prĂ©sente comme originalitĂ© de prĂ©voir en fonction de la proportion du bois en cellulose/hĂ©micelluloses/lignine Ă  la fois le rendement en solide et en huit espĂšces volatiles, et de prendre en compte les interactions Ă  l aide d un facteur empirique, a Ă©tĂ© validĂ© sur les expĂ©riences de torrĂ©faction du hĂȘtre entre 220C et 300C. Son utilisation a mis en Ă©vidence l influence significative des contenus en hĂ©micelluloses et cellulose sur les rendements en produits de la torrĂ©faction.The industrialization of the biomass torrefaction process requires better knowledge of the volatile species release versus operating conditions and feedstock. In this context, the present work aimed at studying solid mass loss and volatile species yields during biomass torrefaction. This transformation was considered on dry wood, at a temperature plateau between 200C and 300C and under inert atmosphere. First, torrefaction experiments were conducted under chemical regime on beechwood and its constituents cellulose, lignin and hemicelluloses in a thermobalance and in a lab-scale device. The mass balance closure was achieved with values ranging from 97 and 104%. The main volatile species measured were water, formaldehyde, acetic acid and CO2. Smaller amounts of methanol, CO, formic acid and furfural were also quantified. All those gas species were not produced by the three biomass constituents. In particular acetic acid seems to be produced by the degradation of the acetate groups contained in hemicelluloses. The results showed that in a first approximation torrefaction can be described by the additive law up to 250C. But this law is not valid at 280C and 300C because of interactions between cellulose and the two other wood constituents. These interactions lead to a decrease in the torrefaction rate of cellulose. Based on these experimental results, a model of wood torrefaction was developed. It consists in the superposition of sub-models describing the torrefaction of each wood constituent. The originality of this model lies in its ability to predict both solid yield and eight volatile species yields depending on cellulose/hemicellulose/lignin wood composition, and to take into account interactions by means of an empirical factor. It was validated on beechwood torrefaction experiments between 220C and 300C. Finally, this model highlighted the significant influence of the proportion of hemicellulose and cellulose on torrefaction product yields.TOULOUSE-INP (315552154) / SudocSudocFranceF

    PIFA-mediated ethoxyiodination of enamides with potassium iodide

    Get PDF
    International audienc

    Geodetic measurements of crustal deformation in the western Mediterranean and

    Get PDF
    Abstract -Geodetic measurements of crustal deformation over large areas deforming at slow rates (<5 mm/yr over more than 1000 km), such as the Western Mediterranean and Western Europe, are still a challenge because (1) these rates are close to the current resolution of the geodetic techniques, (2) inaccuracies in the reference frame implementation may be on the same order as the tectonic velocities. We present a new velocity field for Western Europe and the Western Mediterranean derived from a rigorous combination of (1) a selection of sites from the ITRF2000 solution, (2) a subset of sites from the European Permanent GPS Network solution, (3) a solution of the French national geodetic permanent GPS network (RGP), and (4) a solution of a permanent GPS network in the western Alps (REGAL). The resulting velocity field describes horizontal crustal motion at 64 sites in Western Europe with an accuracy on the order of 1 mm/yr or better. Its analysis shows that Central Europe behaves rigidly at a 0.4 mm/yr level and can therefore be used to define a stable Europe reference frame. In that reference frame, we find that most of Europe, including areas west of the Rhine graben, the Iberian peninsula, the Ligurian basin and the Corsica-Sardinian block behaves rigidly at a 0.5 mm/yr level. In a second step, we map recently published geodetic results in the reference frame previously defined. Geodetic data confirm a counterclockwise rotation of the Adriatic microplate with respect to stable Europe, that appears to control the strain pattern along its boundaries. Active deformation in the Alps, Apennines, and Dinarides is probably driven by the independent motion of the Adriatic plate rather than by the Africa-Eurasia convergence. The analysis of a global GPS solution and recently published new estimates for the African plate kinematics indicate that the Africa-Eurasia plate motion may be significantly different from the NUVEL1A values. In particular, geodetic solutions show that the convergence rate between Africa and stable Europe may be 30-60% slower than the NUVEL1A prediction and rotated 10-30°counterclockwise in the Mediterranean

    A detailed source model for the M_w9.0 Tohoku-Oki earthquake reconciling geodesy, seismology, and tsunami records

    Get PDF
    The 11 March 2011 M_w9.0 Tohoku-Oki earthquake was recorded by an exceptionally large amount of diverse data offering a unique opportunity to investigate the details of this major megathrust rupture. Many studies have taken advantage of the very dense Japanese onland strong motion, broadband, and continuous GPS networks in this sense. But resolution tests and the variability in the proposed solutions have highlighted the difficulty to uniquely resolve the slip distribution from these networks, relatively distant from the source region, and with limited azimuthal coverage. In this context, we present a finite fault slip joint inversion including an extended amount of complementary data (teleseismic, strong motion, high-rate GPS, static GPS, seafloor geodesy, and tsunami records) in an attempt to reconcile them into a single better resolved model. The inversion reveals a patchy slip distribution with large slip (up to 64 m) mostly located updip of the hypocenter and near the trench. We observe that most slip is imaged in a region where almost no earthquake was recorded before the main shock and around which intense interplate seismicity is observed afterward. At a smaller scale, the largest slip pattern is imaged just updip of an important normal fault coseismically activated. This normal fault has been shown to be the mark of very low dynamic friction allowing extremely large slip to propagate up to the free surface. The spatial relationship between this normal fault and our slip distribution strengthens its key role in the rupture process of the Tohoku-Oki earthquake
    • 

    corecore