408 research outputs found

    Treatment effects on neurometabolite levels in schizophrenia: A meta-analysis dataset of proton magnetic resonance spectroscopy

    Get PDF
    This article describes a dataset for a meta-analysis that aimed to investigate the effects of treatment on the neurometabolite status in patients with schizophrenia (DOI of original article: https://doi.org/10.1016/j.schres.2020.03.069 [1]). The data search was performed with MEDLINE, Embase, and PsycINFO. The neurometabolites investigated include glutamate, glutamine, glutamate + glutamine, gamma-aminobutyric acid, N-acetylaspartate, and myo-inositol, and the regions of interest (ROIs) include the frontal cortex, temporal cortex, parieto-occipital cortex, thalamus, basal ganglia, and hippocampus. The meta-analysis was conducted with a random-effects model, and the use of the standardized mean difference method between pre- and post-treatment of subjects for neurometabolites in each ROI of three patient groups or more. The dataset covers raw data of 39 patient groups (773 patients with schizophrenia at follow-up) with neurometabolite levels measured by magnetic resonance spectroscopy both before and after treatment. Furthermore, it contains details of clinical characteristics and treatment types for each group. Therefore, the data would be useful for a reinvestigation of treatment effects on the neurometabolite status from diverse points of view, as well as for the development of future treatment strategies for psychiatric diseases

    Tenomodulin expression in the periodontal ligament enhances cellular adhesion.

    Get PDF
    Tenomodulin (Tnmd) is a type II transmembrane protein characteristically expressed in dense connective tissues such as tendons and ligaments. Its expression in the periodontal ligament (PDL) has also been demonstrated, though the timing and function remain unclear. We investigated the expression of Tnmd during murine tooth eruption and explored its biological functions in vitro. Tnmd expression was related to the time of eruption when occlusal force was transferred to the teeth and surrounding tissues. Tnmd overexpression enhanced cell adhesion in NIH3T3 and human PDL cells. In addition, Tnmd-knockout fibroblasts showed decreased cell adhesion. In the extracellular portions of Tnmd, the BRICHOS domain or CS region was found to be responsible for Tnmd-mediated enhancement of cell adhesion. These results suggest that Tnmd acts on the maturation or maintenance of the PDL by positively regulating cell adhesion via its BRICHOS domain
    corecore