
An Input Widget Framework for Multi-modal
and Multi-device Environments

Nobuyuki Kobayashi, Eiji Tokunaga, Hiroaki Kimura,
Yasufumi Hirakawa, Masaaki Ayabe, Tatsuo Nakajima

Department of Computer Science.
Waseda University

�koba-n, eitoku, hiroaki, yasufumi, mazex, tatsuo�@dcl.info.waseda.ac.jp

Abstract

In future ubiquitous computing environments, our daily
lives will be influenced by a lot of computer-supported ser-
vices all over the place. To interact with those services in-
tuitively, heterogeneous interaction techniques such as ges-
ture recognition, auditory recognition and tangible user in-
terfaces will appear. Besides, several kinds of services will
support multiple input devices, not just one set of them. In
such multi-modal environments, application programmers
must take into account how to adapt heterogeneous input
events to multi-modal services.

We propose an input widget framework that provides
high-level abstraction for heterogeneous input devices, that
we call meta-inputs, for distributed multi-modal applica-
tions. Our framework provides generic and standard inter-
faces between input devices and services. It enables devel-
opers to deploy input devices and services independently.
Also, our framework supports context-aware runtime adap-
tation to switch input devices to handle services dynami-
cally.

1 Introduction

Our daily lives will be dramatically changed by embed-
ded devices which are highly networked in our environ-
ments. These devices will provide a lot of human-oriented
services all over the place. These environments are called
pervasive computing or ubiquitous computing [16]. In the
vision of these environments, physical spaces and virtual
resources are highly integrated with a variety of devices
and sensors. Therefore, interaction techniques in these en-
vironments become more seamless and intuitive. In these
environments, one of the most important issues is how to
interact with a variety of computer embedded devices. Re-

cently, a lot of researchers have developed intuitive inter-
action methods with heterogeneous input devices such as
sensor embedded physical devices, recognition-based tech-
nologies, or their combination.

These interaction techniques are useful and intuitive, but
it is difficult to adapt them to existing services because their
input events are not standardized and generalized. In this
paper, we describe an application framework that provides
the standard and semantic interfaces that facilitate us to
combine new input widgets and services. Existing middle-
ware infrastructures such as BEACH [14] and Gaia [13] dis-
tinguish user interfaces and application logics in ubiquitous
environments and they increase the reusability of software
components, but they do not take into account defining stan-
dard and generic interfaces between them. The main goal
behind our framework is to enable programmers to develop
input widgets and service components independently with
little or no knowledge of one another.

This paper is organized as follows. In the next section,
we present related work. We describe design issues of input
widgets in Section 3. In Section 4, we propose the architec-
ture of an input widget framework, and the implementation
is presented in Section 5. Section 6 shows the evaluation of
our work, and Section 7 presents how to build application
using our framework. In Section 8, we discuss about the
experience of building our framework and its applications.
Finally, we conclude the paper in Section 9.

2 Related Work

To develop our application framework, it is important to
classify input devices and methods. Taxonomies of input
devices have been proposed earlier by Buxton [15] and Card
et al. [4]. They have classified input devices by the combi-
nations of linear and rotary, position and force, absolute and
relative and so on. But we have considered these schemes

Proceedings of the Third IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (SEUS’05)

0-7695-2357-9/05 $20.00 © 2005 IEEE

are not enough for input devices in ubiquitous computing
environments. However they focused attention on the low-
level functionality of input devices, they didn’t focus on the
high-level abstraction of them. Also, they have not describe
about recognition-based interactions as auditory recogni-
tion and gesture recognition.

iStuff [2] is a part of the work on the interactive
workspace project in Stanford University. They categorized
physical devices by the characteristics of dimensions, rela-
tive or absolute, resolution and so on. They designed the
iStuff toolkit based on iROS Event Heap [1], that is the
blackboard architecture in interactive workspaces, and the
PatchPanel [3] that re-map events to applications dynami-
cally. But their architecture have not ensured which com-
ponents and services can connect each others. In addition,
because they have not provided the standard interfaces be-
tween input devices and services, the application program-
mers must be aware of the event types between input de-
vices and services.

Myers’s Amulet [10] demonstrated that it is flexible and
useful for programmers to separate input devices from ap-
plication level code. His model encapsulated interactive be-
haviors into a few Interactor object types [9]. However he
has focused on mouse, keyboard and window systems, he
has not focused on heterogeneous physical or recognition-
based devices. His toolkit has not addressed distributed en-
vironments.

The Gaia [13] project at the University of Illinois is de-
veloping a middleware for ubiquitous computing environ-
ments that is called “active spaces”. They have extended the
Model-View-Controller model to the Model-Presentation-
Adapter-Controller-Coordinator(MPACC) [12] and they
have separated inputs and outputs from application logics in
ubiquitous computing environments. But their framework
has not provided the abstraction of data flow between con-
trollers and models. Because it has not offered semantic and
standard interfaces between these components, it is difficult
for programmers to develop applications without knowing
details of each component.

ICON [5] is an editor designed to configure a set of input
devices and connect them to actions into a graphical inter-
active application. Olwal and Feiner [11] describe an input
processing as a dataflow diagram. Their research shows that
modulating input mechanisms increases the reusability and
flexibility of input modalities. But they do not discuss about
the data type between input modules and the connectivity of
them enough.

3 Design Space of Input Widgets

There are a variety of interaction techniques as multiple
modalities and multiple devices in ubiquitous computing
environments. Although these interaction techniques seems

to be intuitive and effective, but a new type of complexities
is added in ubiquitous computing:

� When using new interaction techniques to services, it
is difficult to adapt them without adding or modifying
programs on the services side.

� It is difficult that existing interaction techniques are
bound to new services without adding or modifying
programs on the controller’s side.

To solve these issues, we must define the effective and
expressive interfaces between input techniques and ser-
vices. In order to define them, we have classified input
techniques into several categories based on design spaces.
In this section, we have examined a various aspects of input
techniques.

3.1 Input Widgets

In this paper, to clarify the domain of input modali-
ties, we defined input widgets as input methods and devices
that provide explicit interaction to services. For examples,
mouse, keyboards, speech recognition and sound recogni-
tion, gesture or posture captured by cameras are all consid-
ered as input widgets. Input widgets contain several input
expressions. For examples, a standard mouse has two but-
tons and two-axis motion sensor and they have each role
to services. We defined these available operations of input
widgets as input methods. It is said that input widgets con-
sist of a variety of input methods.

3.2 Input Capabilities

To classify the characteristics of input widgets, we have
focused on input capabilities, that is the effectiveness and
expressiveness of them. In this paper, we have classi-
fied them into five categories: modality, expression, roles,
bounded or Infinite, and relative or absolute. We describe
the details of these attributes in this section.

3.2.1 Modality

This attribute shows a mode of interaction styles. When we
access ubiquitous services, we must represent commands
by actions to occur input events. When we represent such
an action, we need to express them by five senses such
as touch, taste, hearing, eyesight, and smell. But taste
and smell are not used as interaction techniques generally.
Therefore we have considered that modalities are based on a
basic mode and three interaction modes: tangible, auditory
and visual.

Proceedings of the Third IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (SEUS’05)

0-7695-2357-9/05 $20.00 © 2005 IEEE

Basic Basic is standard and traditional interaction forms
using a set of standard mouse and keyboard. This modality
needs fixed and stable space such as a table and chair. This
modality is aimed at a single user with a single display, but
it is not aimed at collaboration work with multiple-device
environments.

Tangible There have been a lot of user interface re-
searches trying to integrate real world and information sys-
tems using perception of real objects. Tangible user in-
terfaces (TUIs) [8] are an effective approach providing in-
tuitive physical user interfaces for information access and
management. Phidgets [6] are a set of building blocks of the
physical devices to make it easy for application program-
mers to develop physical controllers, sensors, and physi-
cal presentations. We consider components based on these
ideas as tangible widgets.

Auditory Auditory is a voice or sound interaction with
microphones such as speech interfaces of sound interfaces.
This modality also can be used in a variety of situation such
as walking, lying down on a bed, or being busy with both
hands. But it is not useful when users are in a noisy place
or in a place to be quiet.

Visual Visual is an vision-based recognition technique
with cameras such as hand-gesture or eye-tracking and so
on. This modality includes Optical Character Recogni-
tion(OCR) that can distinguish characters on papers. We
can use this modality if we can use devices that capture im-
ages of objects.

3.2.2 Expression

Expression is an available operation or a sensed region of
input widgets. For example, a standard mouse device has
two buttons and one sensor that senses two-axis motions.
That means its expression is two buttons and two axes. This
attribute implies the number of methods of input widgets.

3.2.3 Roles

Input widgets have semantics and functions to control or
modify objects in their environments. We have consid-
ered that we could categorize interaction roles of input wid-
gets into a few terms such as Trigger (sending messages of
something happened), Pointing (selecting objects or draw-
ing images with pointers), Move-Grow(changing parame-
ters of target objects), Text Input (input and editing texts).

3.2.4 Bounded or Infinite

Bounded or Infinite is whether a state of input widgets is
bounded or not. The former is BoundedValue and the latter

is Infinite. If the state is binary (that is a part of Bounded-
Value), this parameter is Binary.

3.2.5 Relative or Absolute

This attribute shows whether input modalities handle a rel-
ative value or an absolute value. For examples, a stylus pro-
vides absolute positional information and a mouse provides
relative values of motion.

3.3 Taxonomy of input modalities

We have examined and classified interaction techniques
depending on the design space (Figure 1). We have focused
on lightweight, small and easily deployed devices that are
effective and useful in ubiquitous computing environments.

Mouse A mouse is a handheld pointing device for com-
puters, involving two buttons and one tracking device that
detect two-axis motions. The role of this device is two trig-
gers and two-axis move-grow actions mainly to control a
pointer on GUIs. The mouse’s 2D motion is typically trans-
lated into the motion of a cursor on the display.

Keyboards A standard keyboard has over 100 keys for
text inputs. They are consisted of normal keys, function
keys, modifier keys, direction keys and so on. The main
function of this device is handling text input and sending
text message to applications.

Tangible Widgets Phidgets [6] are a set of building
blocks for low cost sensing and control devices with USB
interfaces. A phidget slider can handle a one-axis absolute
value. A phidget joystick sensor treats two-axis values with
momentary switch. And a knob formed device by griffin
technology, treats one button and a one-axis value. These
devices are used to change parameters of services.

Auditory Recognition Audio recognition has two aspects
of interaction. The one is the speech input, and the other is
the sound input. The former can handle the text and enable
verbal interaction with applications. The latter can extract
the non-verbal properties of sound or voices such as pitch,
volume, timing and so on, and it controls parameters of ser-
vices.

Vision Recognition Vision-based devices such as cam-
eras can recognize gestures and postures. Our implemen-
tation of hand-gesture recognition toolkit can determine the
position and the orientation of fingers. These modalities
send messages or relative changes of their states.

Proceedings of the Third IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (SEUS’05)

0-7695-2357-9/05 $20.00 © 2005 IEEE

Figure 1. Device Capabilities of Input Modalities

4 Architecture

In ubiquitous computing, various interaction devices are
deployed independently and they work cooperatively. For
examples, instead of mouse and keyboards, we may use a
game controller for controlling mouse cursor and assign its
button to click action. In addition we may want to input
texts by speech recognition interface with a headset. Fre-
quently, these widgets are not on the same host and we must
take into account multiple devices and heterogeneous plat-
forms. If input widgets and services are not built on a com-
mon infrastructure, it is difficult to increase interoperability
of them. And to switch input widgets to operate services
according to contexts, we should design the dynamic re-
configuration APIs in their infrastructure.

In this section, we introduce the design of an input
widget framework for distributed interaction environments.
This framework provides the high-level abstraction for ap-
plication programmers to help them increase reusability and
flexibility to handle input widgets. Also it provides standard
and generic interfaces between input widgets and services.
Therefore, application programmers are encouraged to de-
velop input widgets and services independently with no or
a little knowledge of each others. And it offers a dynamic
reconfiguration mechanism between input widgets and ser-
vices at runtime.

4.1 Meta-inputs

To ensure connectivity of input widgets and services, we
have defined MetaInputs that are device-independent ab-

stract proxies of software controllers. In turn, they offer
standard and generic interfaces between input widgets and
services. They take responsibility to generate typed events
by method call from input devices, and send them to ser-
vice components. We have considered the MetaInputs need
to fill the following requirements to increase reusability of
input widgets.

� Meta-inputs must employ a small and fixed set of
generic interfaces that are separated from the partic-
ular devices or services.

� Meta-inputs should clarify their roles, their functions,
and the type of event data.

They are organized by the characteristics of the roles and
values of various input widgets based on the design space.
Examining the categories of input widgets, we have defined
the four types of meta-inputs such as Trigger, Delta, Bound-
edValue and TextEntry.

Trigger Trigger module is used to cause something to
happen immediately when an event occurs. For examples,
when a mouse button is pressed or when a particular ges-
ture is recognized, this meta-input module is invoked. This
module has a state of binary, and it has a trigger function.

Delta Delta module can express a relative change of val-
ues, such as when a mouse cursor is moved or an audio
volume is turned up/down. This module express a change
of a state of input widgets as an integer value, and it has
change, increase and decrease functions.

Proceedings of the Third IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (SEUS’05)

0-7695-2357-9/05 $20.00 © 2005 IEEE

Bounded Bounded module is used to adjust absolute
bounded value to service such as a phidget slider and a
pen stylus. A Bounded module has ranged a bounded value
from 0.0 to 100.0, and it has an adjust function to modifier
an absolute bounded value.

TextEntry TextEntry module supports sending text infor-
mation to services. For examples, when we input the text
with the keyboards or we speech with the microphone, this
module is used. This module has the text input functions
such as putKey and putText.

4.2 Architecture Overview

Figure 2. Interaction Components of the ap-
plication framework

Our application framework is based on the distributed
MVC model as same as Gaia [13] and BEACH [14]. Our
framework consists of three parts, Input Widgets, Service
Components and Binding Conductor. The overview dia-
gram is shown in Figure 2.

4.2.1 Input Widgets

An input widget is an interaction component that provides
input events to other components. It has a number of meta-
inputs, that is the generic and standard interface module to
attach other component’s slots. Tasks of an input widget are
to generate data from input devices, and to process these
data, and to invoke methods of meta-inputs adequately.

Meta-inputs generate typed events to service compo-
nents by method calls. Meta-inputs have a communication
channel and provide location transparency and data trans-
parency to programmers. An input widget has one or more
meta-input modules, and each modules are able to send
meta-input events to service components.

4.2.2 Service Component

Service Components consist of three parts, that is Slot,
Adapter and Servant.

Slot can bind MetaInputs and receive meta-input events
if their type are the same. They have a communication chan-
nel and they can receive the event from meta-inputs as long
as their types are the same. Adapter has an event queue that
aggregates received meta-input events. A callback function
can be registered to the event queue and are invoked if the
particular events are stored.Servant implements logic of ap-
plications and exports an interface. Servant has meta-input
adapters, and adapters invoke callback methods of servant
by observation of meta-inputs.

4.2.3 Binding Conductor

Figure 3. The GUI of Binding Conductor

To develop applications, our framework can couple in-
put widgets with services. Binding Conductor components
is responsible for composition between input widgets and
service components(Figure 3). This component can regis-
ter or unregister meta-inputs from meta-input slots dynam-
ically. Therefore it enables users to switch input widgets at
runtime according to users’ contexts.

5 Implementation

Our framework is designed for distributed multi-modal
environments, which are in heterogeneous platforms and
languages. For this purpose, the framework is implemented
as C++ and Java classes that can be extended by developers
easily.

Our input widget framework consists of Internet Com-
munication Engine (Ice) [7] IDL definitions of the compo-
nent’s interface and C++ and Java classes for the implemen-
tation. Ice is th e distributed object middleware simular to

Proceedings of the Third IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (SEUS’05)

0-7695-2357-9/05 $20.00 © 2005 IEEE

CORBA. This means application developers can develop in-
put widgets and services with both C++ and Java. And it
will be ported to C#, Visual Basic and Python easily be-
cause of the capability of Ice IDL.

The framework is worked on a various platforms such as
Windows, Linux and Mac OSX and so on. And it is easy to
use other open source libraries and modules for processing
input widgets and services.

These features provide obvious benefits to develop het-
erogeneous input widgets in ubiquitous computing environ-
ments because there are heterogeneous platforms and lan-
guages in these environments.

6 Evaluation

To support the development of multi-device and multi-
modal environments in ubiquitous computing environ-
ments, it is necessary to provide enough processing perfor-
mance. In order to evaluate the framework, we have focused
on two aspects: the throughput of event processing and the
performance of binding meta-input modules on this frame-
work.

All the test have been performed in connected two ma-
chines that are the same conditions, which has a 100Base-
T Ethernet networks, 802.11b wireless LAN, Pentium M
1.30GHz with 768MB of RAM, and Windows XP. All the
times presented are the average result of ten experiments.

6.1 Throughput of Event Processing

We deployed the input widgets that has one Trigger
meta-input and the services that count Trigger events on
each hosts. After binding them, the input widget transmits
the Trigger events a thousand times. When finished sending
events, the service notified it back to the input widgets. The
input widget measure the time from the beginning of send-
ing events to receiving the notification from the service. We
evaluated it in 802.11b and 100Base-T. And we calculate
the number of event processing per one second. The results
are shown in Figure 4.

In our experiments, we found that we can process the 135
events per one second in 802.11b, and the 294 events per
one second in 100Base-T Ethernet networks on our frame-
work. These numbers are enough for common distributed
environments.

6.2 Binding MetaInputs and Slots

The same as the above, we deployed the Input Widgets
that has one Trigger meta-input and the services that has
the Trigger Slot on each hosts. And the BindingConductor
repeats to bind them 1000 times. We evaluated it in 802.11b

Figure 4. Throughput of Event Processing

and 100Base-T. And we calculate that the time of binding a
meta-input and a slot. The result is shown in Figure 5.

In our experiments, we found that the time is 4.5msec
in 802.11b and 2.3 msec in 100Base-T. These result shows
that it is fast enough to process the binding modules on this
framework.

Figure 5. The Time of Binding MetaInputs and
Slots

7 Building Applications

We have developed three multi-modal applications on
this framework. The first application is the light control
service using X10. The second application is the audio
controlling services that is controlled by application scripts.
The third application is the remote desktop application that
shows how we reconfigure input widgets.

7.1 Home Appliance Service

In this section, we present the Home Appliance Service
(Figure 6), which is an application based on our applica-

Proceedings of the Third IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (SEUS’05)

0-7695-2357-9/05 $20.00 © 2005 IEEE

Figure 6. Home Appliance Service

tion framework that provides the functionality for control-
ling the room lights with several input widgets.

We designed four types of input widgets such as the GUI
controller as a Java-Swing application, a set of physical
controllers (phidgets), the chair which the physical sensors
are attached to, and gesture recognition. However these
input widgets are deployed on different hosts, they offer
the equivalent functionalities. BindingConductor manages
these input widgets and switches the suitable modalities ac-
cording to the user’s current situations.

7.2 Media Control Service

Figure 7. Media Control Service

In the second, we developed the Media Control Service
(Figure 7), which is an application that provides function-
alities for selecting and playing music files and changing

its volume. The input widgets are almost reusable from the
Home Appliance Service.

7.3 Remote Desktop Service

In the third, we developed the Remote Desktop Service
(shown in Figure 8). When the user sits in front of the single
general displays, the mouse and keyboards are often used.
But if the user is in front of a large public display, it is diffi-
cult to use these personal devices. We developed the physi-
cal joystick and the controller with acceleration sensor, and
it can control the mouse cursor without a basic mouse or a
trackpad on the display.

Figure 8. Remote Desktop Service

8 Discussion

In our framework, we can switch an input widget for an-
other one at runtime when those input widgets have the
same meta-input type. For example, a keyboard and a
speech input modality have the TextEntry module as their
meta-input module, so we can switch the speech interface
from the keyboard dynamically to input texts according to
situations. Moreover, we can substitute the gesture for the
knob device to control the volume of the audio service be-
cause they have the same meta-input type as Delta. In that
case, our framework facilitates the development and deploy-
ment of multi-modal and multi-device applications as be-
low.

� Our framework enables us to bind new input widgets
to service components without adding or modifying
codes on the services side. Existing input widgets are
easy to be bound to new services without adding or
modifying programs on the controller side.

� Input modalities are dynamically reconfigurable when
the meta-input types of the input widgets are same.

Proceedings of the Third IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (SEUS’05)

0-7695-2357-9/05 $20.00 © 2005 IEEE

8.1 Interpretation of MetaInput Types

Even if meta-inputs are correctly used, it might become
an improper combination for a user. For example, when we
control the volume of the audio service with the physical
knob, whether the right rotation is positive or negative de-
pends on the developer of the input widget. Even if it can
be the right connection between the input widget and the
service, it may not be useful for users.

8.2 Capability Issues

According to physical characteristics, input widgets dif-
fer in qualities of their input events, that is error rate, accu-
racy, resolution and stable or unstable. If services demand
on accurate controls, it is difficult to control it with high
error-rate input widgets. For example, when controlling a
mouse cursor, it is difficult to fix the position of it with the
acceleration sensor or gesture recognition.

8.3 Monitor and Feedback

If there is no means to tell a user about binding status
of input widgets and services, it is difficult to interact with
services in these environments. It is necessary to design the
monitor and feedback of the environment.

9 Conclusion

We described the challenge of a middleware infrastruc-
ture that supports heterogeneous input widgets in ubiqui-
tous computing environments. We pointed out that pro-
viding semantic standard interfaces between input wid-
gets and services increases independency, exchangeability
and reusability of software components in multi-modal and
multi-device interaction environments. In the future, we’ll
have more practical applications and evaluations on our
framework.

References

[1] Johanson B. and Fox A. The Event Heap: A Coordi-
nation Infrastructure for Interactive WorkSpaces. Pro-
ceedings of the 4th IEEE Workshop on Mobile Com-
puter Systems and Applications, 2002.

[2] Rafael Ballagas, et al. iStuff: A Physical User Inter-
face Toolkit for Ubiquitous Computing Environments.
In Proceedings of the ACM CHI 2003 Conference on
Human Factors in Computing Systems, pp. 537–544,
2003.

[3] Rafael Ballagas, et al. Patch Panel: Enabling Control-
Flow Interoperability in Ubicomp Environments. Pro-
ceedings of PerCom 2004. IEEE Computer Society,
pp. 241–252, 2004.

[4] Stuart K. Card, Jock D. Mackinlay, and G. Robertson.
The Design Space of Input Devices. CHI, pp. 117–
124, 1990.

[5] Pierre Dragicevic and Jean-Daniel Fekete. Input
Device Selection and Interaction Configuration with
ICON. Proceeding of IHM-HCI 2001, 2001.

[6] Chester Fitchett and Saul Greenberg. The Phidget Ar-
chitecture: Rapid Development of Physical User In-
terfaces. Workshop Application Models and Program-
ming Tools for Ubiquitous Computing, 2001.

[7] M. Henning, et al. Distributed Programming with Ice.
ZeroC, 2003.

[8] H. Ishii and B. Ullmer. Tangible Bits: Towards Seam-
less Interfaces Between People, Bits, and Atoms. Pro-
ceedings of CHI’97, pp. pp.234–241, 1997.

[9] Brad A. Myers. A New Model for Handling Input.
ACM Transactions, pp. 289–320, 1990.

[10] Brad A. Myers, et al. The Amulet Environment: New
Models for Effective User Interface Software Devel-
opment. IEEE Transactions on Software Engineering,
pp. pp.347–365, 1997.

[11] Alex Olwal and Steven Feiner. Unit: Modular De-
velopment of Distributed Interaction Techniques for
Highly Interactive User Interfaces. Proceedings of In-
ternational Conference on Computer Graphics and In-
teractive Techniques, 2004.

[12] Manuel Roman and Roy H. Campbell. A Middleware-
Based Application Framework for Active Space Ap-
plications. Middleware, pp. 433–454, 2003.

[13] Manuel Roman, et al. Gaia: A Middleware Infrastruc-
ture to Enable Active Spaces. IEEE Pervasive Com-
puting Magazine, 2002.

[14] Peter Tandler. The BEACH application model and
software framework for synchronous collaboration in
ubiquitous computing environments. Journal of Sys-
tems and Software, January 2004.

[15] Buxton W. Lexical and Pragramatic Consideration
of Input Structures. Computer Graphics, pp. 31–37,
1983.

[16] M. Weiser. The Computer for the 21th Century. Sci-
entific American, pp. 94–104, September 1991.

Proceedings of the Third IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (SEUS’05)

0-7695-2357-9/05 $20.00 © 2005 IEEE

