97 research outputs found

    Impact of the first-forbidden β\beta decay on the production of A∼195A \sim 195 r-process peak

    Get PDF
    We investigated the effects of first-forbidden transitions in β\beta decays on the production of the r-process A∼195A \sim 195 peak. The theoretical calculated β\beta-decay rates with β\beta-delayed neutron emission were examined using several astrophysical conditions. As the first-borbidden decay is dominant in N∼126N \sim 126 neutron-rich nuclei, their inclusion shortens β\beta-decay lifetimes and shifts the abundance peak towards higher masses. Additionally, the inclusion of the β\beta-delayed neutron emission results in a wider abundance peak, and smoothens the mass distribution by removing the odd-even mass staggering. The effects are commonly seen in the results of all adopted astrophysical models. Nevertheless there are quantitative differences, indicating that remaining uncertainty in the determination of half-lives for N=126N=126 nuclei is still significant in order to determine the production of the r-process peak.Comment: 6 pages, 4 figures, 1 table, Phys. Lett. B, in pres

    Autonomous Navigation, Guidance and Control of Small Electric Helicopter

    Get PDF
    In this study, we design an autonomous navigation, guidance and control system for a small electric helicopter. Only small, light-weight, and inaccurate sensors can be used for the control of small helicopters because of the payload limitation. To overcome the problem of inaccurate sensors, a composite navigation system is designed. The designed navigation system enables us to precisely obtain the position and velocity of the helicopter. A guidance and control system is designed for stabilizing the helicopter at an arbitrary point in three-dimensional space. In particular, a novel and simple guidance system is designed using the combination of optimal control theory and quaternion kinematics. The designs of the study are validated experimentally, and the experimental results verify the efficiency of our navigation, guidance and control system for a small electric helicopter.ArticleINTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS. 10:54 (2013)journal articl

    Impact of New beta-decay Half-lives on r-process Nucleosynthesis

    Full text link
    We investigate the effects of newly measured beta-decay half-lives on r-process nucleosynthesis. These new rates were determined by recent experiments at the radioactive isotope beam factory facility in the RIKEN Nishina Center. We adopt an r-process nucleosynthesis environment based on a magnetohydrodynamic supernova explosion model that includes strong magnetic fields and rapid rotation of the progenitor. A number of the new beta-decay rates are for nuclei on or near the r-process path, and hence they affect the nucleosynthesis yields and time scale of the r-process. The main effect of the newly measured beta-decay half-lives is an enhancement in the calculated abundance of isotopes with mass number A = 110 -- 120 relative to calculated abundances based upon beta-decay rates estimated with the finite-range droplet mass model. This effect slightly alleviates, but does not fully explain, the tendency of r-process models to underproduce isotopes with A = 110 -- 120 compared to the solar-system r-process abundances.Comment: 9 pages, 3 figures, 1 table, published in PR

    The Effect of Output Processing on Subsequent Input Processing: A Free Recall Study

    Get PDF
    There is now growing evidence that output promotes second language acquisition. Recently, interest has been shown in examining (a) the effect of output processing on subsequent input processing, and (b) what factors mediate that effect. An experiment was conducted for two proficiency levels of Japanese learners of English under two conditions (output and non-output). First, participants in the output condition wrote a story in English based on four cartoon pictures (output task processing). Second, participants in both conditions read a model story describing the four cartoon pictures (subsequent input processing). Third, both sets of participants were asked, without any advance notice, to recall what they had read (written free recall test). Performance on the written free recall test suggests that (a) output tasks facilitated subsequent input processing, and (b) complex relationships existed among L2 proficiency levels, experiment conditions, and linguistic domains during subsequent input processing. These findings are discussed with reference to second language acquisition research. Implications for pedagogical practice are also considered

    Frustration-induced eta inversion in the S=1/2 bond-alternating spin chain

    Full text link
    We study the frustration-induced enhancement of the incommensurate correlation for a bond-alternating quantum spin chain in a magnetic field, which is associated with a quasi-one-dimensional organic compound F5PNN. We investigate the temperature dependence of the staggered susceptibilities by using the density matrix renormalization group, and then find that the incommensurate correlation becomes dominant in a certain range of the magnetic field. We also discuss the mechanism of this enhancement on the basis of the mapping to the effective S=1/2 XXZ chain and a possibility of the field-induced incommensurate long range order.Comment: 4 pages, 5 figures, replaced with revised version accepted to PR

    The Cytoplasmic Domain of the Large Myelin-Associated Glycoprotein Isoform Is Needed for Proper CNS But Not Peripheral Nervous System Myelination

    Get PDF
    The myelin-associated glycoprotein (MAG) is a member of the immunoglobulin gene superfamily and is thought to play a critical role in the interaction of myelinating glial cells with the axon. Myelin from mutant mice incapable of expressing MAG displays various subtle abnormalities in the CNS and degenerates with age in the peripheral nervous system (PNS). Two distinct isoforms, large MAG (L-MAG) and small MAG (S-MAG), are produced through the alternative splicing of the primary MAG transcript. The cytoplasmic domain of L-MAG contains a unique phosphorylation site and has been shown to associate with the fyn tyrosine kinase. Moreover, L-MAG is expressed abundantly early in the myelination process, possibly indicating an important role in the initial stages of myelination. We have adapted the gene-targeting approach in embryonic stem cells to generate mutant mice that express a truncated form of the L-MAG isoform, eliminating the unique portion of its cytoplasmic domain, but that continue to express S-MAG. Similar to the total MAG knockouts, these animals do not express an overt clinical phenotype. CNS myelin of the L-MAG mutant mice displays most of the pathological abnormalities reported for the total MAG knockouts. In contrast to the null MAG mutants, however, PNS axons and myelin of older L-MAG mutant animals do not degenerate, indicating that S-MAG is sufficient to maintain PNS integrity. These observations demonstrate a differential role of the L-MAG isoform in CNS and PNS myelin

    Bacterial and fungal bioburden reduction on material surfaces using various sterilization techniques suitable for spacecraft decontamination

    Get PDF
    Planetary protection is a guiding principle aiming to prevent microbial contamination of the solar system by spacecraft (forward contamination) and extraterrestrial contamination of the Earth (backward contamination). Bioburden reduction on spacecraft, including cruise and landing systems, is required to prevent microbial contamination from Earth during space exploration missions. Several sterilization methods are available; however, selecting appropriate methods is essential to eliminate a broad spectrum of microorganisms without damaging spacecraft components during manufacturing and assembly. Here, we compared the effects of different bioburden reduction techniques, including dry heat, UV light, isopropyl alcohol (IPA), hydrogen peroxide (H2O2), vaporized hydrogen peroxide (VHP), and oxygen and argon plasma on microorganisms with different resistance capacities. These microorganisms included Bacillus atrophaeus spores and Aspergillus niger spores, Deinococcus radiodurans, and Brevundimonas diminuta, all important microorganisms for considering planetary protection. Bacillus atrophaeus spores showed the highest resistance to dry heat but could be reliably sterilized (i.e., under detection limit) through extended time or increased temperature. Aspergillus niger spores and D. radiodurans were highly resistant to UV light. Seventy percent of IPA and 7.5% of H2O2 treatments effectively sterilized D. radiodurans and B. diminuta but showed no immediate bactericidal effect against B. atrophaeus spores. IPA immediately sterilized A. niger spores, but H2O2 did not. During VHP treatment under reduced pressure, viable B. atrophaeus spores and A. niger spores were quickly reduced by approximately two log orders. Oxygen plasma sterilized D. radiodurans but did not eliminate B. atrophaeus spores. In contrast, argon plasma sterilized B. atrophaeus but not D. radiodurans. Therefore, dry heat could be used for heat-resistant component bioburden reduction, and VHP or plasma for non-heat-resistant components in bulk bioburden reduction. Furthermore, IPA, H2O2, or UV could be used for additional surface bioburden reduction during assembly and testing. The systemic comparison of sterilization efficiencies under identical experimental conditions in this study provides basic criteria for determining which sterilization techniques should be selected during bioburden reduction for forward planetary protection

    Antiferromagnetic Zigzag Spin Chain in Magnetic Fields at Finite Temperatures

    Full text link
    We study thermodynamic behaviors of the antiferromagnetic zigzag spin chain in magnetic fields, using the density-matrix renormalization group method for the quantum transfer matrix. We focus on the thermodynamics of the system near the critical fields in the ground-state magnetization process(MM-HH curve): the saturation field, the lower critical field associated with excitation gap, and the field at the middle-field cusp singularity. We calculate magnetization, susceptibility and specific heat of the zigzag chain in magnetic fields at finite temperatures, and then discuss how the calculated quantities reflect the low-lying excitations of the system related with the critical behaviors in the MM-HH curve.Comment: accepted for publication in Physical Review

    Identification of 45 New Neutron-Rich Isotopes Produced by In-Flight Fission of a 238U Beam at 345 MeV/nucleon

    Full text link
    A search for new isotopes using in-flight fission of a 345 MeV/nucleon 238U beam has been carried out at the RI Beam Factory at the RIKEN Nishina Center. Fission fragments were analyzed and identified by using the superconducting in-flight separator BigRIPS. We observed 45 new neutron-rich isotopes: 71Mn, 73,74Fe, 76Co, 79Ni, 81,82Cu, 84,85Zn, 87Ga, 90Ge, 95Se, 98Br, 101Kr, 103Rb, 106,107Sr, 108,109Y, 111,112Zr, 114,115Nb, 115,116,117Mo, 119,120Tc, 121,122,123,124Ru, 123,124,125,126Rh, 127,128Pd, 133Cd, 138Sn, 140Sb, 143Te, 145I, 148Xe, and 152Ba
    • …
    corecore