68 research outputs found
Exendin-4, a glucagon-like peptide-1 receptor agonist, provides neuroprotection in mice transient focal cerebral ischemia
Glucagon-like peptide-1 (GLP-1) is an incretin hormone known to stimulate glucose-dependent insulin secretion. The GLP-1 receptor agonist, exendin-4, has similar properties to GLP-1 and is currently in clinical use for type 2 diabetes mellitus. As GLP-1 and exendin-4 confer cardioprotection after myocardial infarction, this study was designed to assess the neuroprotective effects of exendin-4 against cerebral ischemia–reperfusion injury. Mice received a transvenous injection of exendin-4, after a 60-minute focal cerebral ischemia. Exendin-4-treated vehicle and sham groups were evaluated for infarct volume, neurologic deficit score, various physiologic parameters, and immunohistochemical analyses at several time points after ischemia. Exendin-4 treatment significantly reduced infarct volume and improved functional deficit. It also significantly suppressed oxidative stress, inflammatory response, and cell death after reperfusion. Furthermore, intracellular cyclic AMP (cAMP) levels were slightly higher in the exendin-4 group than in the vehicle group. No serial changes were noted in insulin and glucose levels in both groups. This study suggested that exendin-4 provides neuroprotection against ischemic injury and that this action is probably mediated through increased intracellular cAMP levels. Exendin-4 is potentially useful in the treatment of acute ischemic stroke
Clinicopathological characteristics of patients with amyotrophic lateral sclerosis resulting in a totally locked-in state (communication Stage V)
In the present study, we performed a comprehensive analysis to clarify the clinicopathological characteristics of patients with amyotrophic lateral sclerosis (ALS) that had progressed to result in a totally locked-in state (communication Stage V), in which all voluntary movements are lost and communication is impossible. In 11 patients, six had phosphorylated TAR DNA-binding protein 43 (pTDP-43)-immunoreactive (ir) neuronal cytoplasmic inclusions (NCI), two had fused in sarcoma (FUS)-ir NCI, and three had copper/zinc superoxide dismutase (SOD1)-ir NCI. The time from ALS onset to the need for tracheostomy invasive ventilation was less than 24 months in ten patients. Regardless of accumulated protein, all the patients showed common lesions in the pallido-nigro-luysian system, brainstem reticular formation, and cerebellar efferent system, in addition to motor neurons. In patients with pTDP-43-ir NCI, patients with NCI in the hippocampal dentate granule neurons (DG) showed a neuronal loss in the cerebral cortex, and patients without NCI in DG showed a preserved cerebral cortex. By contrast, in patients with FUS-ir NCI, patients with NCI in DG showed a preserved cerebral cortex and patients without NCI in DG showed marked cerebral degeneration. The cerebral cortex of patients with SOD1-ir NCI was preserved. Together, these findings suggest that lesions of the cerebrum are probably not necessary for progression to Stage V. In conclusion, patients with ALS that had progressed to result in communication Stage V showed rapidly-progressed symptoms, and their common lesions could cause the manifestations of communication Stage V.ArticleACTA NEUROPATHOLOGICA COMMUNICATIONS.4:107(2016)journal articl
Transcriptional repression induces a slowly progressive atypical neuronal death associated with changes of YAP isoforms and p73
Transcriptional disturbance is implicated in the pathology of polyglutamine diseases, including Huntington's disease (HD). However, it is unknown whether transcriptional repression leads to neuronal death or what forms that death might take. We found transcriptional repression-induced atypical death (TRIAD) of neurons to be distinct from apoptosis, necrosis, or autophagy. The progression of TRIAD was extremely slow in comparison with other types of cell death. Gene expression profiling revealed the reduction of full-length yes-associated protein (YAP), a p73 cofactor to promote apoptosis, as specific to TRIAD. Furthermore, novel neuron-specific YAP isoforms (YAPΔCs) were sustained during TRIAD to suppress neuronal death in a dominant-negative fashion. YAPΔCs and activated p73 were colocalized in the striatal neurons of HD patients and mutant huntingtin (htt) transgenic mice. YAPΔCs also markedly attenuated Htt-induced neuronal death in primary neuron and Drosophila melanogaster models. Collectively, transcriptional repression induces a novel prototype of neuronal death associated with the changes of YAP isoforms and p73, which might be relevant to the HD pathology
DNA Display Selection of Peptide Ligands for a Full-Length Human G Protein-Coupled Receptor on CHO-K1 Cells
The G protein-coupled receptors (GPCRs), which form the largest group of transmembrane proteins involved in signal transduction, are major targets of currently available drugs. Thus, the search for cognate and surrogate peptide ligands for GPCRs is of both basic and therapeutic interest. Here we describe the application of an in vitro DNA display technology to screening libraries of peptide ligands for full-length GPCRs expressed on whole cells. We used human angiotensin II (Ang II) type-1 receptor (hAT1R) as a model GPCR. Under improved selection conditions using hAT1R-expressing Chinese hamster ovary (CHO)-K1 cells as bait, we confirmed that Ang II gene could be enriched more than 10,000-fold after four rounds of selection. Further, we successfully selected diverse Ang II-like peptides from randomized peptide libraries. The results provide more precise information on the sequence-function relationships of hAT1R ligands than can be obtained by conventional alanine-scanning mutagenesis. Completely in vitro DNA display can overcome the limitations of current display technologies and is expected to prove widely useful for screening diverse libraries of mutant peptide and protein ligands for receptors that can be expressed functionally on the surface of CHO-K1 cells
LC3, an autophagosome marker, is expressed on oligodendrocytes in Nasu-Hakola disease brains
BACKGROUND: Nasu-Hakola disease (NHD) is a rare autosomal recessive disorder characterized by sclerosing leukoencephalopathy and multifocal bone cysts, caused by a loss-of-function mutation of either DAP12 or TREM2. TREM2 and DAP12 constitute a receptor/adaptor signaling complex expressed exclusively on osteoclasts, dendritic cells, macrophages, and microglia. Neuropathologically, NHD exhibits profound loss of myelin and accumulation of axonal spheroids, accompanied by intense gliosis accentuated in the white matter of the frontal and temporal lobes. At present, the molecular mechanism responsible for development of leukoencephalopathy in NHD brains remains totally unknown. METHODS: By immunohistochemistry, we studied the expression of microtubule-associated protein 1 light chain 3 (LC3), an autophagosome marker, in 5 NHD and 12 control brains. RESULTS: In all NHD brains, Nogo-A-positive, CNPase-positive oligodendrocytes surviving in the non-demyelinated white matter intensely expressed LC3. They also expressed ubiquitin, ubiquilin-1, and histone deacetylase 6 (HDAC6) but did not express Beclin 1 or sequestosome 1 (p62). Substantial numbers of axonal spheroids were also labeled with LC3 in NHD brains. In contrast, none of oligodendrocytes expressed LC3 in control brains. Furthermore, surviving oligodendrocytes located at the demyelinated lesion edge of multiple sclerosis (MS) did not express LC3, whereas infiltrating Iba1-positive macrophages and microglia intensely expressed LC3 in MS lesions. CONCLUSIONS: These results propose a novel hypothesis that aberrant regulation of autophagy might induce oligodendrogliopathy causative of leukoencephalopathy in NHD brains
An autopsy case report of adult-onset Krabbe disease : Comparison with an infantile-onset case
Krabbe disease is a lysosomal storage disease caused by a deficiency of the galactocerebrosidase (GALC) enzyme, which leads to demyelination of the central and peripheral nervous systems. Almost all patients with Krabbe disease are infants, and this is the first report of adult-onset cases that describe pathological findings. Here, we present two autopsy cases: a 73-year-old female and a 2-year-old male. The adult-onset case developed symptoms in her late thirties and was diagnosed by the identification of GALC D528N and L634S mutations and by T2-weighted magnetic resonance imaging; she had increased signal in the white matter along the pyramidal tract to the bilateral precentral gyrus, as well as from the triangular part to the posterior horn of the lateral ventricle. Microscopically, Kluver-Barrera staining was pale in the white matter of the precentral gyrus and occipito-thalamic radiation, and a few globoid cells were observed. The GALC mutations that were identified in the present adult-onset case do not completely inactivate GALC enzyme activity, resulting in focal demyelination of the brain
Human-derived physiological heat shock protein 27 complex protects brain after focal cerebral ischemia in mice.
Although challenging, neuroprotective therapies for ischemic stroke remain an interesting strategy for countering ischemic injury and suppressing brain tissue damage. Among potential neuroprotective molecules, heat shock protein 27 (HSP27) is a strong cell death suppressor. To assess the neuroprotective effects of HSP27 in a mouse model of transient middle cerebral artery occlusion, we purified a "physiological" HSP27 (hHSP27) from normal human lymphocytes. hHSP27 differed from recombinant HSP27 in that it formed dimeric, tetrameric, and multimeric complexes, was phosphorylated, and contained small amounts of αβ-crystallin and HSP20. Mice received intravenous injections of hHSP27 following focal cerebral ischemia. Infarct volume, neurological deficit scores, physiological parameters, and immunohistochemical analyses were evaluated 24 h after reperfusion. Intravenous injections of hHSP27 1 h after reperfusion significantly reduced infarct size and improved neurological deficits. Injected hHSP27 was localized in neurons on the ischemic side of the brain. hHSP27 suppressed neuronal cell death resulting from cytochrome c-mediated caspase activation, oxidative stress, and inflammatory responses. Recombinant HSP27 (rHSP27), which was artificially expressed and purified from Escherichia coli, and dephosphorylated hHSP27 did not have brain protective effects, suggesting that the phosphorylation of hHSP27 may be important for neuroprotection after ischemic insults. The present study suggests that hHSP27 with posttranslational modifications provided neuroprotection against ischemia/reperfusion injury and that the protection was mediated through the inhibition of apoptosis, oxidative stress, and inflammation. Intravenously injected human HSP27 should be explored for the treatment of acute ischemic strokes
- …