192 research outputs found

    On the admissible multiplication in α-coefficient cohomology theories

    Get PDF
    Article信州大学理学部紀要 11(1): 1-17(1976)departmental bulletin pape

    On the admissible multiplication in α-coefficient cohomology theories II

    Get PDF
    Article信州大学理学部紀要 12(2): 81-101(1978)departmental bulletin pape

    Destruction of mesoscopic chemically modulated domains in single phase high entropy alloy via plastic deformation

    Get PDF
    Chemically modulated mesoscopic domains in a fcc single phase CrMnFeCoNi equi-atomic high entropy alloy (HEA) are detected by small angle diffraction performed at a synchrotron radiation facility, whereas the mesoscopic domains cannot be detected by conventional X-ray diffraction and 2D mappings of energy dispersive X-ray spectroscopy by scanning electron microscopy and scanning transmission electron microscopy. The mesoscopic domains are deformed and shrieked, and finally destructed by plastic deformation, which is supported by the comprehensive observations/measurements, such as electrical resistivity, Vickers hardness, electron backscattering diffraction, and hard X-ray photoemission spectroscopy. The destruction of the mesoscopic domains causes the decrease in electrical resistivity via plastic deformation, so called K-effect, which is completely opposite to the normal trend of metals. We confirmed that the presence and the size of local chemical ordering or short-range order domains in the single phased HEA, and furthermore, Cr and Mn are related to form the domains

    Collaborator of alternative reading frame protein (CARF) regulates early processing of pre-ribosomal RNA by retaining XRN2 (5′-3′ exoribonuclease) in the nucleoplasm

    Get PDF
    Collaborator of alternative reading frame protein (CARF) associates directly with ARF, p53, and/or human double minute 2 protein (HDM2), a ubiquitin-protein ligase, without cofactors and regulates cell proliferation by forming a negative feedback loop. Although ARF, p53, and HDM2 also participate in the regulation of ribosome biogenesis, the involvement of CARF in this process remains unexplored. In this study, we demonstrate that CARF associates with 5′-3′ exoribonuclease 2 (XRN2), which plays a major role in both the maturation of rRNA and the degradation of a variety of discarded pre-rRNA species. We show that overexpression of CARF increases the localization of XRN2 in the nucleoplasm and a concomitant suppression of pre-rRNA processing that leads to accumulation of the 5′ extended from of 45S/47S pre-rRNA and 5′-01, A0-1 and E-2 fragments of pre-rRNA transcript in the nucleolus. This was also observed upon XRN2 knockdown. Knockdown of CARF increased the amount of XRN2 in the nucleolar fraction as determined by cell fractionation and by immnocytochemical analysis. These observations suggest that CARF regulates early steps of pre-rRNA processing during ribosome biogenesis by controlling spatial distribution of XRN2 between the nucleoplasm and nucleolus

    Chtop (Chromatin target of Prmt1) auto-regulates its expression level via intron retention and nonsense-mediated decay of its own mRNA

    Get PDF
    Chtop (chromatin target of Prmt1) regulates various aspects of gene expression including transcription and mRNA export. Despite these important functions, the regulatory mechanism underlying Chtop expression remains undetermined. Using Chtop-expressing human cell lines, we demonstrate that Chtop expression is controlled via an autoregulatory negative feedback loop whereby Chtop binds its own mRNA to retain intron 2 during splicing; a premature termination codon present at the 5′ end of intron 2 leads to nonsense-mediated decay of the mRNA. We also show that Chtop interacts with exon 2 of Chtop mRNA via its arginine-glycine-rich (RG) domain, and with intron 2 via its N-terminal (N1) domain; both are required for retention of intron 2. In addition, we show that hnRNP H accelerates intron 2 splicing of Chtop mRNA in a manner dependent on Chtop expression level, suggesting that Chtop and hnRNP H regulate intron 2 retention of Chtop mRNA antagonistically. Thus, the present study provides a novel molecular mechanism by which mRNA and protein levels are constitutively regulated by intron retention

    Haploidentical Stem Cell Transplantation Using Post-Transplant Cyclophosphamide for T-Cell Prolymphocytic Leukemia after Alemtuzumab Induction Therapy: A Case Report

    Get PDF
    T-cell prolymphocytic leukemia (T-PLL) is a rare aggressive disease with a poor prognosis. Allogeneic stem cell transplantation (allo-SCT) followed by alemtuzumab administration is the most promising treatment for T-PLL but is associated with a high risk of infections as alemtuzumab strongly suppresses cellular immunity, leading to high transplant-related mortality and unsatisfactory survival rates. In addition, for patients without human leukocyte antigen-matched donors, haploidentical stem cell transplantation (haplo-SCT) using post-transplant cyclophosphamide (PTCy) has been used because of the ready availability of donors and achievement of results comparable to those of transplantation with human leukocyte antigen-matched donors. However, there are no reports on the efficacy and safety, including infectious complications, of haplo-SCT with PTCy after alemtuzumab therapy in patients with. Here, we describe a 66-year-old Japanese male patient with T-PLL treated successfully with haplo-SCT after induction therapy of alemtuzumab for T-PLL. Approximately 3 months after the achievement of complete remission with alemtuzumab for T-PLL, haplo-SCT with reduced-intensity conditioning and PTCy was performed. Infectious complications were improved by early therapeutic interventions, and peripheral T cell counts gradually recovered. The patient was alive for more than 16 months after allo-SCT with no signs of relapse. Thus, haplo-SCT using PTCy should be considered as an option after alemtuzumab treatment for T-PLL

    Poly(A)-specific ribonuclease regulates the processing of small-subunit rRNAs in human cells

    Get PDF
    Ribosome biogenesis occurs successively in the nucleolus, nucleoplasm, and cytoplasm. Maturation of the ribosomal small subunit is completed in the cytoplasm by incorporation of a particular class of ribosomal proteins and final cleavage of 18S-E pre-rRNA (18S-E). Here, we show that poly(A)-specific ribonuclease (PARN) participates in steps leading to 18S-E maturation in human cells. We found PARN as a novel component of the pre-40S particle pulled down with the pre-ribosome factor LTV1 or Bystin. Reverse pull-down analysis revealed that PARN is a constitutive component of the Bystin-associated pre-40S particle. Knockdown of PARN or exogenous expression of an enzyme-dead PARN mutant (D28A) accumulated 18S-E in both the cytoplasm and nucleus. Moreover, expression of D28A accumulated 18S-E in Bystin-associated pre-40S particles, suggesting that the enzymatic activity of PARN is necessary for the release of 18S-E from Bystin-associated pre-40S particles. Finally, RNase H–based fragmentation analysis and 3΄-sequence analysis of 18S-E species present in cells expressing wild-type PARN or D28A suggested that PARN degrades the extended regions encompassing nucleotides 5–44 at the 3΄ end of mature 18S rRNA. Our results reveal a novel role for PARN in ribosome biogenesis in human cells

    Prevalence of the metabolic syndrome in elderly and middle-aged Japanese

    Get PDF
    AbstractBackground/PurposeDiagnosis and management of the metabolic syndrome (MetS) are beneficial for successful aging. In spite of several criteria for MetS, there is little information on cardiometabolic risk clustering in elderly Japanese. The purpose of this study was, therefore, to determine the relationship between age-associated changes in obesity and metabolic components in the Japanese.MethodsWe analyzed data from the nationwide survey conducted in 2000. Using Adult Treatment Panel III (ATP III) and Japanese diagnostic criteria for MetS, we analyzed 2366 people aged from 40 to 79 years (men, 1425 and women, 941) from the total participants.ResultsThe prevalence of MetS was almost three fold higher by modified ATP III, International Diabetes Federation, and Japanese criteria, in elderly women than in middle-aged women, whereas no difference was found between middle-aged and elderly men by the three criteria. A marked increase in the prevalence of MetS was found by modified ATP III and International Diabetes Federation criteria compared with that by the Japanese criteria in women. Among the risk factors, the prevalence of central obesity and dyslipidemia increased only in women and that of high fasting glucose and high blood pressure increased in both genders with aging. Among the MetS subjects who fulfilled the modified ATP III criteria, more clustering of risk was observed in elderly than in middle-aged subjects, especially in women. Blood pressure increased and triglyceride decreased in both genders, and non-high-density-lipoprotein cholesterol decreased in elderly men. The prevalence of dyslipidemia decreased in elderly men.ConclusionAging is an important factor that affects the metabolic abnormality, and aging of the population would lead to increase in the prevalence of MetS. Therefore, the development of better approaches to the prevention and management of MetS is necessary for successful aging in our society

    TDP-43 stabilises the processing intermediates of mitochondrial transcripts

    Get PDF
    The 43-kDa trans-activating response region DNA-binding protein 43 (TDP-43) is a product of a causative gene for amyotrophic lateral sclerosis (ALS). Despite of accumulating evidence that mitochondrial dysfunction underlies the pathogenesis of TDP-43–related ALS, the roles of wild-type TDP-43 in mitochondria are unknown. Here, we show that the small TDP-43 population present in mitochondria binds directly to a subset of mitochondrial tRNAs and precursor RNA encoded in L-strand mtDNA. Upregulated expression of TDP-43 stabilised the processing intermediates of mitochondrial polycistronic transcripts and their products including the components of electron transport and 16S mt-rRNA, similar to the phenotype observed in cells deficient for mitochondrial RNase P. Conversely, TDP-43 deficiency reduced the population of processing intermediates and impaired mitochondrial function. We propose that TDP-43 has a novel role in maintaining mitochondrial homeostasis by regulating the processing of mitochondrial transcripts
    corecore