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Introduction

S. ARAKI and H. Topa [17] discussed the multiplicative structures in mod. g
generalized cohomology theories. In [2], the first named author discussed the
multiplicative structures in «a-coefficient cohomology theories {«¢ is stable map of
spheres) and in the case a =7 (a stable class of the Hopf map from S® to S?)
obtained a sufficient condition for existence of admissible multiplication in z*( ;a)
for any reduced multiplicative generalized cohomology theory {4*, ¢} defined
on the category of finite CW-complexes or of the same homotopy type with base
points. In [37], a sufficient condition for existence of admissible multiplication in
the case @ = 72 is obtained.

In this paper we discusse the existence of the admissible multiplication in a
more general case including the case @ =% and 72,

For the stable map a e {S7+#-1, S77} satisfying the condition “k is an odd
integer or 2«a = 0”, we obtained a sufficient condition for existence of admissible
multiplication in #*( ; a) for any multiplicative generalized cohomology theory T,

In §1, we define the notion of admissible multiplication in «-coefficient coho-
mology theories. In §2, we compute some stable homotopy groups and make
preparations to the existence theorem of admissible multiplication from homo-
topical points of view. The existence of admissible multiplication is proved in §3
by constructing a multiplication.
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§ 1. Preliminaries

First we shall fix some notations :

X/\Y : the reduced join of two spaces X and Y with base points,

S X = X/\S# : the iterated reduced suspension of X,

Suf = fAlgn : the iterated reduced suspension of f,

T =T(4, B): AANB —> BAA : the map swiching factors,

{X, Y} : the stable homotopy group of CW-complexes X and Y with base

point preserving,

Gr = lim mr+ £(S7?) : the k-th stable homotopy group of the sphere.

Let {IZ*, o} be a deduced cohomology theory deﬁned on the category of finite
CW-complexes and be equipped with an associative multiplication # Let « be a
stable homotopy class of a map from S7+k-t to S7. Since the stable homotopy
type of the reduced mapping cone of this map depends only on homotopy class «,
we denote as

Coa=S7 %C(Sr«-k—l)_

The a-coefficient cohomology theory {#*( ;a), ¢4} is defined by

Ri(X : @) = hi+r M X A\Ca)
and the suspension isomorphism
ou s WX ; @) —> BIYUSX ; @)
is defined as the composition
o = (Ix\NT)'o : Bi(X ;@) — hi*{SX ; a),

where T = T(S!, Ca).
Let us denote by i: S7 —> Ca the canonical inclusion and let =z : Ca — S7+%
be the map collapsing S7 to a point. Then we put

(1.1) P = (— L+ B Ly Am¥or+k : ji(X) — Ri(X ; @),
3y = (— L +Ra=r(Le N\iJ* 2 (X 5 &) —> Bi+K(X)
and
Ba = Paday o+ B X : @) —> Bivk(X ; )
which are natural and called the reduction mod. «, the Bockstein homomorphism
and the mod. @ Bockstein homomorphism respectively.
Moreover we put
(1. 2) =t X)) QWAY 5 &) — BHXNY ; a),
t = (=1 BALNTY L (X 5 @) @ i(Y) — RiH(XNY ; @)
where T = T(Y, Ce)
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A multiplication
Pa: B(X 5 )@ RIY 5 ) — RiH(XAY ; @)
is said to be admissible (cf. [27] 1.6) if it satisfy the following properties
(A1) compatible with #; and ¢ through the reduction mod.« 1i.e.,
(1.3) #p = taPa @ 1) and fp = La(l @) Oa)

(As) there exists a cohomology operation X« : 4i( ) —> ni-k ; a) of degree —k
satisfying the relation

(L. 4) Xalx R ¥) = (— 1Yk (x @ La(Y)) = LpXa(2) @ )
for xe7i(X) and it is related to #« by the following relation
(1.5)  Batalx @ ¥) = Hrlbaye(%) @ ¥) + (—1)iktp(x @ Saso( V) — (— 1) £ XatBaso(%) & Bayol))
for xeﬁi(x ; @) and yeRi(Y ; a);
(4s) it is quasi-associative in the sense that

oty Q1) = £1(1 R La),
(1.6) Palttr ® 1) = tall @ H1),
URta @ 1) = £l @ Lg).

§ 2. Stable homotopy groups of some complexes

Let ¢ be an integer. Assume that to =0 for an element acnr+£-1(S7). Let Ca

be the reduced mapping cone of «. For simplicity we denote C = C« From
Puppe’s exact sequence and its dual associated with a cofibration

(2.1) S L, C N Srk

we obtain the following table
Lemma 2.1. The groups {S7+i, C} and {C, S*+/} are isomorphic to the
corresponding groups in the following table :

! generators of free part
(sr, ¢} ‘ z \ i
(Sr*k, C} Z + i(Gifna) ‘ 2
{S7+i, C} Jfinite group for j=O0, k
€, Sk} z x
(c, s} \ Z + (Gafna)= 7
(C, Sr+i} | finite group for i3 0, k

where t and t ave defined by nf =t 157+ and t i =t 1g7.
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Morever we may chose t and | such that the relation
(2.2) it im=1t1c

holds in {C, C7}, where 1. is the homotopy class of the identity of C.

From Lemma 2.1 and dual Puppe’s exact sequence associated with (2.1) it
follows that

Lemma 2.2. The groups {SiC, C} is isomorphic to the corvesponding groups
in the following table :

generators of free part
{C, StC} z (Skiyr
{c, ¢} Z + Z + {Gr/na) r (or i), 1c
{S*C, C} Z + finite group 1
{SjC, C} finite group for j+<k, O and —k

From dual Puppe’s exact sequence associated with (2, 1), we obtain the following

exact sequence

ko )¥ ki Ska)*
___,{Sr+21e’ C}(ﬁz {Skc, C}(S_Z), {Sr-rk, C}(ﬂ {Sr+2k—1, C} N

where groups {S#+2k-1, C} and {S7+2k, C7} are finite by Lemma 2. 1.
I (Ska)*th ?(Ska) =0, then there exists an element § of {S*C, C?} which satisfy
the following relations

(2.3) © §(Ski)=7¢ and 75 = Skt

and we can take § as generator of free part in {S*C, Cl.
In the following, we consider acn,+£-1(S7) only as the element satisfying

(2. 4) k is an odd integer or 2« =0,

Lemma 2.3. (Lemma 3.5 of [4]) Let o be an element of nr+p-1(S7) Satsfying
(2.4). Assume that k< 2v — 1, then there exists an element o of wmorvan-1(S%) such
that equality

(2.5) 1cN\a = (S7i)a! (S7 +k-1x)

holds in the homotopy set | S7+k-1C, SrC].
Under the condition (2. 4), from Lemma 2.3, we shall see that CAC is homo-
topy equivalent in stable range to the following mapping cone

(2. 6) Na=S"Ca U C(S7+-=1Cq)

where & = (S7i)a! (S7+k1x).
We denote also by N« a subcomplex of N. obtained by removing the (27-4k)
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-cell S7C — S27, i.e.,
(2.7) Na= St g C(S7+k-1Ca)
where & = a/(S7+k-1g),
The cell structures of N« and N« can be interpreted as follows :
(2.8) Na=(S7Ca\/S2rk)Uerrszk, No = (Str\/Ser+h)Ueer+2k,

where e27+2k is attached to S27\/S27+k by a map represented the sum of o/ {27 +2k-1,
S2r} and as{S7+k-1, Sr}
We use the following notations ;

(2.9) j: N« —> Na the inclusion,
bt Na —> S2r+k, the map collapsing Na,
ig: S7C —> Na, g : S* —> Na, the inclusions,
Ty : Na —> S*+kC, m ¢ Na — S7+kC, the map collapsing S7C or Ser,
iyt Stk — Na, iy 1 S27+k —> N, the inclusions,
Tyt Na —> Q = 827 9/82“-276, the map collapsing S27+k,

Hereafter, these mapping will be fixed as to satisfy the following relations ;

(2.10) Tof =m, Jio=1p(S7i), Toly = STk =myiy,

f1=3t, DPle=S57zr and iya! = — iy(Sr+ka),

Lemma 2.4. There exists an element L of {N«, C/\CY} satisfying the following
three conditions ;

(2.11) (1) £ is a homotopy equivalence, i.e., there is an inverse ¢{CANC, Na}
of € such that € =1 and (& =1,

(i) Ciy=1cNi, thus EQcNi) =14

and
({ii) (IcA\m)E=Tmy thus m&=1¢/\m.

We put
(2.12) Lo=CLiie {Strek, CACY and & = pE e {CAC, S¥+i}
Then it follows from (ii) and (iii) of (2.11) that
(2.13) (IeA\®) o = S7+ki, Ey{lc/\i) = S7r.

We consider the Puppe’s exact sequence associated with cofibration
(2. 14) cns Y enc AT epsren,

Then, from Lemma 2.1, (2.12) and (2,13), we obtain the following table.
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Lemma 2.5. The groups {Si, C/\C} and {CN\C, S/} are isomorphic fo the
corresponding groups in the following table :

generators of free part
(S, CAC} z N
{seret, CACY Z + Z + (i/\i)(Gafna) NG, G
{Sere2k CACY Z 4 finite group
{Si, CN\C} Sfinite group j>c2r, 2r + k and 2r + 2k
(CAC, Sir+tk} z 2 A\x
{CNC, St} Z + Z + (Gifna)(m \w) AT, &
{CAC, S*7} Z + finile group )
(CAC, S} ; finite group for j 52, % + k and 2 + 2k

where {, and &, are elements satisfying (1c/\x)ly = Sk and &(1c/\i) = S7=x.
From the Puppe’s exact sequence associated with (2.14) and Lemma 2.5 we
can see easily the following lemma :

Lemma 2.6.
(1) {CAC, CAS7*#} = {IcAn}+ {i t/\x} + {(S7+#i)&0} + i(Gr/70)(m/\7)
=~ 7 + Z + Z -+ finite group,
(ii) {CAS”, CACT={1eAi}+ {£aNi}+ {&(S7n)} + (N (Gr/pa)n
=~ 7 + 7 + Z + finite group.
Lemma 2.7. Let Ec{CAC, Nu«} be an element satisfying (2.11)

(i) Any element & €{C/N\C, Nd} satisfies (2.11) i f and only i f
g =&+ o(leAn)
Jor some wc{S7+kC, S*C}.
(ii) For any element E=Grflx, put &4 =& + &(w/\n) where & = p&, Then there
exists £c{CAC, N} such that satisfying (2.11) and (2.12).

Proof. (i) Assume that & and & satisfy (2.11). Since (1cAd)* (&' — &) =0, there
exists re{S7+*C, Ne} such that (1cA#n)*r =& — &, From (iii) of (2.11), (I Az)*(#T)
= 0. On the other hand the homomorphism (1oAr)* : {S7+kC, S7+kC} — {CAC,
S7+2C} is a monomorphism. Thus w7 = 0. Therefore 7 is contained in the image
of ZTO* . {Sr+kc, Src} — {Sﬂ-‘kc, 1—\7“}_

Conversely, if & satisfies (ii) and (iii) of (2.11), then so dose &. Put & ={—
(1c/\Dor,, then (' is a homotopy inverse of &,
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(ii) The element & =& + 1,(1c/A\&)(1cAx) is the required element.
We consider the ordinary homology group. Let { be an element of { N+, CAC?
satisfyimng (2. 11) and & be a homotopy inverse of £. Let

er/\er er/\Sr
(er/\er+k, 6r+k/\€r) (er/\3r+k, er+k/\Sr
er+k/\Cr+k Cr+h/\Sr+k
be generators of the groups H{CAC) and H.Na.) rspectively, where e;/A\e; and
e;/\S; is a generator of (i + j)-dim. group resp.
Using (2.11), for the ordinary homology map &, and {, induced by & and £
resp., we obtain that .

er/\er e, /\S»
Ex (er/\gf'ﬂi” e7’+k/\37> = (e?'/\srﬁe#nerwe/\sf‘: er+k/\Sr>

er+k/\€r+k Crek/\Sr+h

ey /\Sr e, /\er
Cx (e;//\SHk, er+k/\sr) = <3r/\er+k+ner+k/\er, er+k/\er)

Crak/\Sr+k r+k/\Crik

for some integer #.

Using an element &, = p¢ satisfying (2.13), we can put

() (ART = alle/A\m) + bitA\x) + (S7+Fi)E)  mod. i(G r/1e) (x/\7),
for some integers @, p, and ¢ by Lemma 2.6, where 7' = T(C, C). The homology
maps induced by (1cADT, 1leArm, it/\x and (S7+ki)& can be expressed as follows :

er/\er 0
(LeAm)s T (er/\er+k, €r+k/\er> = (0, (—_1)7(7'+k)e,,/\s7,+k>

€rvk/\er+k (—1)’+ker+k/\sr+k ’
e, /\ér 0
(1eA\7)s <er/\€r+k, €r+k/\er> = <er/\sr+k, O)
er+k/\er+k er+k/\sr+k s
er/\€r 0
(’?/\75)* <er/\er+k, er+k/\er)=(ter/\sr+k, O)
Crik/\Crk 0 y

er/\er 0
(S7+ ki) o (er/\eﬂk, er+k/\er> = <~ner/\sr+k, er/\3r+k)

€r+k/\erk 0 y
(i&x/\m))y = 0 for any &€ G/l

From (x), we obtain the identity
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(LeNAm) Ty = alle/N\m)s + b0 t_/\n)* + (ST + k7)o
of homology maps. Applying this to er:2/\€r+p, €r\er+k and ersr/\€,, we have

(,1)r+kg,,+k/\s,,+k = QCyr+k/\Sr+k,
0= aes A\Sr+k -+ bi€r/\Sr+k — CHEr \Srp,
(=17 +kde, A\Syrk = CCr /\Sr+p.

This is, a =(—1)+k, ¢ = (=1 +® and p = — {(—1)7+k — (1) (r+Fm)/t and
(LeART = (1) +*(1cA\m) — w!lit/\m) 4 (= 1)+ (Sr+ki)€,

mod. i(Gr/7a)(x/\x), where n' = (—1)r+k — (—1)r(r+km)/t.
Here we can put

(AT = (=1 +k(le/\7) — #I(i E/\7) + (= 1) k> (S7+ki)Eq -+ i8 (w/\x)

for some £=Gu/ta. 1f &40, put &, =& + (—1)+grAn), then &, satisfies
(2.18) and the equality

(LeART = (=1)+#(le/\x) — (it /\x) -+ (= 1)+ (STki)gl g
hold.
From (ii) of Lemma 2.7, there exists & €{CAC, N} such that satisfy (2.11),
(2.12) and induce the same homology maps as &.
Let 'e{Na C/C} be the homotopy inverse of ¢’ and ¢y = &i;. Then ¢ and /g
induce the same homology map as { and {, resp. Making use of {/, by a similar
calculation we see that

T(AcNi) = (1) (1e/N\i) — #"(tw/N\D) + (= 1)+ L (S7m) + (i) &=
for some & & Gr/72, where n' = ((—1) + (—1)r(r+n)/t,
Hence we get the Lemma :

Lemma 2.8. There exists £€{CAC, N«} and its inverse (c{Na«, C/AC} which
satisfy (2.11) and the following relations :

(i) (L ART = (1) +k(lc/\m) — w/ (i t/\z) + (—1)7 r+(Sr+ ki),

(ii) TN = (17 (T Ni) — 0" (g /\D) -+ (= 1) T+ L(S7a) + (i/\i)8 =
Sfor some §& G/, where w = ((—1)r+k — (—1)rr+p)ff, n" = (—1)r + (— 1) +Dn)/,
& = P& and Gy = CZI-

Now we consider the element acxz,+z-1(S7) satisfying

(2. 15) IeA@ =0 and ¥Ska)=0

where ta =0 for an integer £

Then the cell structure of N« can be interpreted as follows

Na = SrCa\/STJ“kCa.
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Thus there exists a map my-t: S7+#C —> Na such that
(2. 16) TL'()_l(Sr'(_ki) = 1—.1 and EQTCQ—I == 1Sr+kc

i.e., m-! is the inclusion.
Making use of (2. 15) we have the following commutative diagram associated
with (2. 14) and (2. 1) in which all rows and all columns are exact :

: : 0
0 — {Szr+2k, Src} — {Szr+‘.’.le’ C/\C} > {327+2k, Sr+lec} — 0

l l(Sr+kﬂ;)* l

0 —— {S7+kC, S7C} (12&)* {87+kC,C/A\C} (12&’:)* 1S7+kC, S7+kCT — 0

l l (Sr+ki)* i

0 —— {Szr+k, S7CY  —— {82r+k, CACYT —— {S2r+k, SrekClr —— 0

| | l

0 0 0.

From (2.11) (2.12) and (2. 16) we have
(2.17 (S7+-iy (Cmy-1) =& and (A Am)Mmp1) = 157‘+kc.‘

From (2.2) and the commutativity of above diagram, we have
(2. 18) (S7+Hiy (Oi) = EN.

Proposition 2.9. Let | be an odd integer., Assume that acny+p-1(S7) satisfies
(2.15). Then there exists an element y={S7+*C, C/N\C?} such that

(1) (LeA\m)T = (= 1) +klgrehe,
(i) (LeNA\RTT = 1grere
and
(iii) TN + (—1)7 {1 /N\D) = (— D +Rp(S7 + ki) (S7w) + (i/\i) 87

where T = T(C, C) and some §=Gr/70.
Proof. From Lemma 2.8, we have
(2.19) T (LeNi) + (=17 +1(1eNi) = (= 1)k +Ryy(S7a) + (IA\1) 8

where 7y = (—1)7 4y + (—1)¢r+0keongFA), 1y = (L + (— 17 k)t
We consider an element

T = (_1)7' ‘“kCTEo"l + (_.]_)(r+1)(k+1)n0(5/\i)

of {S7+kC, CAC}. Then, from (2.17) and (2.18), we obtain that (S7+4)*7 =7,
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Thus we have (iii).
Using (2.17) and (1cA=)(1c/\i) = 0, it follows that
(2. 20) (LeA7)T = (—1)7 +k1grshe.
From (i) of Lemma 2.8, (2.20) and (2.3), we obtain
(LeADTT = 1s7+ke.

Proposition 2.10. Let | be an even integer. Assume that aSmy+p-1(S?) satisfies
(2.15) and t = 2. Then there exists an element y{S7+*C, C/\C} such that

(i) (e/N\R)Y = (—1)r+klgreke,
(ii) (LeAR)TT = Lgr+ic
and
(iif) T (LeNi) + (— 17 (Le/Ni) = 1(ST+R)(S7 ) + (— 1) (0 £/NG) + (i/\i) &=

where T = T(C, C) and some &< Gr/Ma.
Proof. From (ii) of Lemma 2.8 and (2.2), we have

(2. 19y T (LeNi) = (—=1) (1 N\i) + To(S77) — (= 1)7(tx/\D) + (i) &=
= (=1 +*(1c /i) + 10(S7m) + (=17 ({ ¢ Ni) + (N8
where Ty = (—1)7(1 — 23) (FAQ) + (—1)rr+8,, 19 = (1 + (—1)r k).
| We consider an element
7= (=1 +kmy-t + (—1)7(1 — n0)(6/\i)

of {S7+¢C, CAC}
By a similar calculation as in Proposition 2.9 we have the results,
Next we consider the element a€ny+z-1(S7) satisfying

(2. 21) leNa = (S7i)a(S7+k-17) and fa=0

for some non trivial element o &myr+92-1(S27) and the integer ¢ such that o =0
{c.f., Lemma 2,3).
We put

(2. 22) Q = S2ryerr +2k

and denote by

(2.23) 182 — @ and =« :Q » G2r2k

the canonical inclusion and the map collapsing S27 to a point resp. Then from

{2.9) we have following cofibrations

i !
(2'24) Sar — Q —— S3r+2k
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(2. 25) Szr+k _z—1> Na _711+ Q.
Making use of (2.21) we have the following commutative diagram associated
with (2.14) and (2. 25) in which all rows and all columns are exact :

: : 0

l | !

o {Q CAS}  — {@ CACY  — {Q CAS™} — 0
| = |

s {Na, C/\Sr} (lﬂ*) {_Nm C/\C} (1CA£)>I: {Nm C/\Sr+k}

! i l

0 ._—)-{Szr+k, C/\Sr} — {Szr+k, C/\C} - {Szr+k’ C/\Sr+le}___> 0

! l l

0o 0 0.

» 0

From the Puppe’s exact sequence associated with the cofibration (2.24) and
Lemma 2.1, we obtain that

(2. 26) {Q, CAS"+*¥} = Z +i(Gr/1a)a!

and (S7+k#)z! is a generator of free part.
On the other hand, the right column in the above diagram splits. Thus, from
(2.10), Lemma 2.1 and the relation #'m, = (S7+*x)m, we obatin that

(2.27) {Na, CAST**} = Z + Z + i(Gr/10)zm,

and (¢7)x, and =, are generators of free parts,
From (2.3) and (2.10), we obtain

i1%(S78)my = (S70)moiy = (S78)(S7 +4i) = S71.
Thus it follows from commutativity of the above diagram that
(2.8) i ((Le/\i)(S7d)mo) = ENN.

Proposition 2,11. Let k be an odd integer, Assume that an element acny+1-1(S7)
satisfies (2.21), Then there exists an element B of {N«, CAC} such that

(i) (IcN\m)B = (1) +km,
(ii) (Le/\m)T B = mo
and
(iii) T (e + (=171 (1e/N\i) = (= 1)k +RBi (ST ) + (i/\i)8 =

where T = T(C, C) and some & €Gr/9x (c.f., Lemma 2.8),
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Proof. Let { be a homotopy equivalence given in Lemma 2.8. Then we put

B = (=1)0r+DCx0ny(1c/N\i)(S70)mo + (= 1) **{jE{ Ny C/AC}

where #ny = (1 + (—1)r#n)/t. Then using (2.19), (2.28), (2.12) and Lemma 2,8, the

proof of this proposition is completely parallel to it of Proposition 2.9,
Proposition 2.12. Let | be an even integer. Assume that an element o€ ry+p-1(S7)

satisfies (2.21) and t = 2. Then there exists an element B of {N«, CAC?} such that

(1) (LeA\m)B = (=17 +hr,
(ii) (1e/A\m)TB = mp
and

(iii) TN + (=17 (1e/Ni) = (=D +Biy(S7a) + (—1)ri tAi + (A& =
where T = T(C, C) and some §€Gr/e (c. 1., Lemma 2. 8). k

o

Proof. For ¢ in Lemma 2.8, we put

B = (—1) (1 — no)(LcN\i)(S79)mo + (—1)7 ¢ +RLj,

where 7 = (1 + (—1)7#n)/t. Then using (2.19), (2.28) and (2.12), similarly as in
Proposition 2.10 we have the results.

§ 8. Existence of the admissible multiplication in I;*( ;@)

Let # be an associative multiplication in a reduced generalized cohomology
theory {%*, ¢}. In this paragraph we define a multiplication t4 in 7 : a) for some
acnr+p-1(S7), and give a sufficient condition for tx to be admissible.

Let A and B be finite CW-complexes with base points, for any element ¢ of
{A, B}, we define a homomorphism

p**: X NAB) — B(XNA)
by the formula
HE — g-m(lx/\f)g’n

where f: S"A — SmPB is a map representing ¢. The definition of ¥** dose not
depend on the choice of f.
Making use of an element r&{S7+*C, CAC?}, we define a map

(3.1) to: B(X 3 ) Q@ WY ;@) —> RH(XNY ;)
as the compsition
P = (= 1) +0g= DL ay ATV (Lt AT ALYt
B(X ;) @WY 5 @) =i +HXN\C) R Wi+ +HY AC)
— Riviver k(X ACAY AC)
— vk (X AY ACAC)
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s piviverszk( X AV AC/\S+)
s pirisr k(X AV NC) = BHHXNY ;)

where T' =T(V, C).
Obviously #x is linear and natural with respect to both variable,
Proposition 3.1. Assume that r<{S7+kC, C/\C? satisfies

(3.2)

where T =

and {(4s).

(D7 k(I N\R)T = 157 +he = (Ie/N\m)TT

13

T(C, C). Then the map ta of (3.1) is a multiplication satisfying (A1)

Proof. To prove (4;), putting 7/ =TV, C), T = T(C, C).
By definition of ¢ and ta, we have

Similarly, using the relation (1cAn)7 = (—1)7+k1g7 42, we obtain that

Ha(Pa @ 1) = o=+ (1 pAy NI 1x AT! ALc) (1x Amo" 2 @ Ly ac)

= g~ U+ (Ux Ay ATV (Lx Ay Alc/A\z)* o7 +kp
= o=l N\r)TT)* o7 +k pt
=p=py by (3.2).

toa(l @ ) = Hp.

Then it follows that Px(1) is the bilatiral unit of t« (see [2]).

The compatibility with suspension isomorphism o¢a and (4s) are verified directly
from the definition of ta, o« and the associativity of 2.

Proposition 3.2. It there exists an element .

relation

(3.3)

operalion

where T =

re{SrtkC, CACY satisfying the

T(lc/\?) + (_ﬂl)r+k(lc/\i) — (_1)k(r+k)7’(Sr+ki)(Srn~) + (_1) 7'("+k)(i/\i)(s7’7()

Jor some x{C, S71, then map ta of (3.1) satisfies (4s) with associated cohomology

Yo = (— i =bgrter  ji ) — ik ;a)

T(C, C).

Proof. We put 7/ =T(¥, C). On (X ; ) QKi(Y ; «), we have

210800 @ 1) + (—1Yk12p(1 &) Gy)

= (=1)ir+D e (Ixav ALc/ND* (Lx ay ATV Ax NT' Al #
+ (=)D o= (Ix ay AL NS (Lx AT ALg)*

= (= 1)+ g=7 (T(Le/ND) + (=1 +e(Le A (e AT/ ALe)*#

— (__1)1'(7‘+k) ad ((_1)/e(r+k) 7(51‘+/ei) (Srn‘))** (1X/\T’/\1c)* 7
(= 1D g7 (=1 TR NS (Le AT L) £
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= (=DiTHEB(ANTP SHIN* =T HO AT AT ALe)* 1
+ (— 1)+ R g (AL (IAT! ALG)*
= falle + (— 1) +R+rr R y¥* g7 g2 ({ A** (IAT! Alc)* 2.

On the other hand we have

Py @ Bayo) = (— 1)+ +kdvir +r(r+k) g=2r ({ AGP* (LAT! ALe)* 2.
Here we put

Ko = (=1 +0gRgr 2 ji( ) — Bi-K ; a),

then we have

Salla = (B0 @ 1) + (—1)i% (1 & o) — (1Y *#Xa 4{Butyg & Fxyo).
Clearly Xa is a cohomology operation and the relation

Xapt = (e @ 1) = (=1)ik 11 ® Xa)

holds,

As a consequence of Proposition 2.9, 2.10, 3.1 and Proposition 3.2 we obtain
the following theorem :

Theorem 3.3. Assume that an element acSmy.p-1(S7) satisfies (2.15) and =2
if kis even. Then there exists an admissible multiplication to in B ; a).

Now we consider an element a&nr+r-1(S7) sasisfying (2.21), i.e., lgA\a=
(Sri)a! (S7+k-1x) and fa =0 for some & Emyr+s1-1(S2r) and the integer ¢ such that
ta = 0.

Using the notation (2.9), cofibration

iy o
S27 —— Ng — Sr+kc

yields, for any finite CW-complex W with a base point, a cofibration

1IN 1
(3.4) WAS? W\ WAN« A WAST+#C.

If (@x)** =0 in #* then the *-cohomology exact sequence associated to the
above cofibration (3. 4] breaks into the following exact sequence

(3‘ 5) 0 — Zn(W/\Sr+IeC) (W/\Na) (1&32* zn(W/\SZV) — 0,

By (3.5) for W = S° and » = 27, it follows that
Lemma 3.4. (i) If (@'z)** =0 in ¥, then there exists %EZZ’(N,X) satisfying

(N =

(3.6) i*Py = o271,
(ii) If a/'** =0 in h*, then there exists 9005%27(1\]“) satisfying

(3. 6)/ l’o*sao = g2r] and Z‘l*goo - O
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Proof. See Lemma 4.2 of [2].
Making use of ¢, of Lemma 3.4, hence at least under the assumption of
(a'm)** = 0, we define a homorphism

Py MW /ANa) —> BHWAS?+C)
by the formula
8.7 Py (x) = (L A\mo)*-1(x — {o-27 (1 Nig)*x @ P0))

for xeh(W/\Na).

Since x — f{o-27 (1 Nig)*x @ @) is in the kernel of (IpAdg* and (IwAm)* is
monomorphic, the map ¢y of (3.7) is well-defined homomorphism,

Lemma 3.5. (i) Pw is a left inverse of (ly/\m)*, i.e., Pylly/\m)* =an
identity map ; hence the sequence of (3.5) splils :

1 ANa) = ha(WAS7+4C) @ k(W AS™).
(if)y 9w is natural in the sense that
(JANST+*1e)* Py = P (f/\Lna)*,
where f: W' — W.
(iii) Pw is compatible with the suspension in the sense that
AwAT* 6Py = Psw(lwA\T")*o,
where T'=T(S!, S**kC) and T" = T(S!, Na).
(iv) The relation
MY @ Pwlx) = Prawt(y & %)

holds, where x&hn(W/\Na«) and yshn(Y).
(v) If ¢, satisfies (3.6), then the relation

(Aw/A\S7+ki)* ¢y = (Ly/N\in)*

holds for the inclusions i : §* — C and 41:S¥ — Na.
(vi) Assume that p is commutative. Then the velations hold ;

(a) H(2@P) = T* Py R 2),
where ze%i(z) and T!'=T(Z, Na).
(b) AwAT"V*UPw(%) Q 2) = Puaz(lw/N\T') Hx @ 2),

where  x€h*(W/\Ne), 2€hi(Z), T'=T(Z, No) and T"=T(Z, ST**C).
Proof. By a similar calcuation to Lemma 4.3, 4.4, 4.5 and Lemma 4.6 of
[2], we have the results,
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Making use of the homomorphism ¢y defined by (3.7) and the element § of
{Na« CACY, we fefine a map

(3.8) to: WX 5 @) QWY 5 @) — BitI(XNY ;a)
as the composition

Ho = (=1 +Da- Py n v (L vy ABVAx AT Nle)
Bi(X 5 @) @MY 5 @) = Bi+r+H( X AC) @ 1+ (Y AC)
— piriverszk(X ACAY AC)
—s pirivere2k( X AY ACAC)
— piriverezk(X Y AN«
— Zi+j+zr+2/e(X/\y/\Sr+kc)
— Ritir ek (X AYAC) = hiHH(X Y ; a),
where T!'=T(, C).
Pa is defined only if (a¢/z)** =0,
The definition of ¢« depends on the choices of ¢, and B. However we fix
during the subsequent proofs of propérties of an admissibie multiplication.
Clearly #a is linear and natural with respect to both variables,
Proposition 3.6. If an element B€{ N« C/\C} satisfies

(3.9) LeA\D)T B = my = (—L)7+&(1o N7,

where T=T(C, C), w: Ne — ST+C is the map collapsing S2r, then the map
o of (3.8) is a multiplication satisfying (A).

Proof. (See Theorem 4.7 of [2]) From (i) of Lemma 3.5 and (3.9) we can see
(A1) directly. From (ii) and (iii) of Lemma 3.5 it follows that the map #a of (3.8)
is compatible with the suspension isomorphism oa.

Proposition 3.8. If p is a commutative multiplication, then for any B&{Na,
C/AC?Y the map ta of (3.8) satisfies (As).

Proof. (See Theorem 4,10 of [27]) It follows from (iv) and (vi) of Lemma 3.5
that #o satisfy (/).

Proposition 3.8. Let o/** =0 in n*. Assume that BE{Na«, C/N\C} satisfies

(3_ 10) T(lc/\l) -+ (*1)""/3(1@/\1') = (wl)le(r+k) ﬁil(Srn—) -+ (—-1)"(7*’?)(1'/\1')(577()

Jor some x&{C, S*}, where T=T(C, C). Then the map ta of (3.8) satisfies (/)
with associated cohomology operation

Ta= (—L)iCrebsgr s i) — ik ; a).

Proof. (See Theorem 4.9 of [2]) It follows from (v) of Lemma 3.5 that
satisfy (As).
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As a consequence of Proposition 2.11, 2,12, 3.6, 3.7 and Proposition 3.8 we
have

Theorem 3.9. Let p be a commutative, associative multiplication in a reduced
generalized cohomology theory *. Assume that acrr+-1(Sy) satisfies (2.21) and the
order of o is two if kb is an even integer. If o/** =0 in WE, then the admissible
multiplication o exist in B*( ; a).
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