On the admissible multiplication in α -coefficient cohomology theories

Dedicated to Professor Ryoji Shizuma on his 60-th birthday

By Nobuhiro Ishikawa

Institute of Mathematics, College of General Education,
Kyushu University

and HIDEYUKI KACHI

Department of Mathematics, Facaulty of Science, Shinshu University (Received May 4, 1976)

Introduction

S. Araki and H. Toda [1] discussed the multiplicative structures in mod, q generalized cohomology theories. In [2], the first named author discussed the multiplicative structures in α -coefficient cohomology theories (α is stable map of spheres) and in the case $\alpha = \eta$ (a stable class of the Hopf map from S^3 to S^2) obtained a sufficient condition for existence of admissible multiplication in \widetilde{h}^* (; α) for any reduced multiplicative generalized cohomology theory $\{\widetilde{h}^*, \sigma\}$ defined on the category of finite CW-complexes or of the same homotopy type with base points. In [3], a sufficient condition for existence of admissible multiplication in the case $\alpha = \eta^2$ is obtained.

In this paper we discusse the existence of the admissible multiplication in a more general case including the case $\alpha = \eta$ and η^2 .

For the stable map $\alpha \in \{S^{r+k-1}, S^r\}$ satisfying the condition "k is an odd integer or $2\alpha = 0$ ", we obtained a sufficient condition for existence of admissible multiplication in $\widetilde{h}^*(\cdot; \alpha)$ for any multiplicative generalized cohomology theory \widetilde{h}^* .

In § 1, we define the notion of admissible multiplication in α -coefficient cohomology theories. In § 2, we compute some stable homotopy groups and make preparations to the existence theorem of admissible multiplication from homotopical points of view. The existence of admissible multiplication is proved in § 3 by constructing a multiplication.

§ 1. Preliminaries

First we shall fix some notations:

 $X \wedge Y$: the reduced join of two spaces X and Y with base points,

 $S^n X = X \wedge S^n$: the iterated reduced suspension of X,

 $S^n f = f \wedge 1_{S^n}$: the iterated reduced suspension of f,

 $T = T(A, B) : A \land B \longrightarrow B \land A$: the map switching factors,

 $\{X, Y\}$: the stable homotopy group of CW-complexes X and Y with base point preserving,

 $G_k = \lim_{r \to k} (S^r)$: the k-th stable homotopy group of the sphere.

Let $\{\widetilde{h}^*, \sigma\}$ be a deduced cohomology theory defined on the category of finite CW-complexes and be equipped with an associative multiplication μ . Let α be a stable homotopy class of a map from S^{r+k-1} to S^r . Since the stable homotopy type of the reduced mapping cone of this map depends only on homotopy class α , we denote as

$$C_{\alpha} = S^r \cup_{\alpha} C(S^{r+k-1}).$$

The α -coefficient cohomology theory $\{\widetilde{h}^*(\cdot;\alpha), \sigma_{\alpha}\}$ is defined by

$$\widetilde{h}^{i}(X:\alpha) = \widetilde{h}^{i+r+k}(X \wedge C_{\alpha})$$

and the suspension isomorphism

$$\sigma_{\alpha}$$
; $\widetilde{h}^{i}(X;\alpha) \longrightarrow \widetilde{h}^{i+1}(SX;\alpha)$

is defined as the composition

$$\sigma_{\alpha} = (1_X \wedge T)^* \sigma : \widetilde{h}^i(X; \alpha) \longrightarrow \widetilde{h}^{i+1}(SX; \alpha),$$

where $T = T(S^1, C_{\alpha})$.

Let us denote by $i: S^r \longrightarrow C_\alpha$ the canonical inclusion and let $\pi: C_\alpha \longrightarrow S^{r+k}$ be the map collapsing S^r to a point. Then we put

(1. 1)
$$\rho_{\alpha} = (-1)^{i(r+k)} (1_{X} \wedge \pi)^{*} \sigma^{r+k} : \widetilde{h}^{i}(X) \longrightarrow \widetilde{h}^{i}(X; \alpha),$$
$$\delta_{\alpha, 0} = (-1)^{i(r+k)} \sigma^{-r} (1_{X} \wedge i)^{*} : \widetilde{h}^{i}(X; \alpha) \longrightarrow \widetilde{h}^{i+k}(X)$$

and

$$\delta_{lpha} =
ho_{lpha \delta lpha, \ 0} : \widetilde{h}^i(X : lpha) \longrightarrow \widetilde{h}^{i+k}(X \ ; lpha)$$

which are natural and called the reduction mod. α , the Bockstein homomorphism and the mod. α Bockstein homomorphism respectively.

Moreover we put

(1. 2)
$$\mu_{L} = \mu : \widetilde{h}^{i}(X) \otimes \widetilde{h}^{j}(Y; \alpha) \longrightarrow \widetilde{h}^{i+j}(X \wedge Y; \alpha),$$

$$\mu_{R} = (-1)^{j(r+k)} (1_{X} \wedge T)^{*} \mu : \widetilde{h}^{i}(X; \alpha) \otimes \widetilde{h}^{j}(Y) \longrightarrow \widetilde{h}^{i+j}(X \wedge Y; \alpha)$$

where $T = T(Y, C_{\alpha})$.

A multiplication

$$\mu_{\alpha}: \widetilde{h}^{i}(X; \alpha) \otimes \widetilde{h}^{j}(Y; \alpha) \longrightarrow \widetilde{h}^{i+j}(X \wedge Y; \alpha)$$

is said to be admissible (cf. [2] 1.6) if it satisfy the following properties

(A₁) compatible with μ_L and μ_R through the reduction mod. α i.e.,

(1.3)
$$\mu_L = \mu_{\alpha}(\rho_{\alpha} \otimes 1) \text{ and } \mu_R = \mu_{\alpha}(1 \otimes \rho_{\alpha});$$

(A2) there exists a cohomology operation $\chi_{\alpha}:\widetilde{h}^{i}(\)\longrightarrow \widetilde{h}^{i-k}(\ ;\alpha)$ of degree -k satisfying the relation

$$(1. 4) \chi_{\alpha}\mu(x \otimes y) = (-1)^{ik}\mu_{L}(x \otimes \chi_{\alpha}(y)) = \mu_{R}(\chi_{\alpha}(x) \otimes y)$$

for $x \in \widetilde{h}^i(X)$ and it is related to μ_{α} by the following relation

$$(1.5) \quad \delta_{\alpha}\mu_{\alpha}(x\otimes y) = \mu_{1}(\delta_{\alpha,0}(x)\otimes y) + (-1)^{ik}\mu_{R}(x\otimes \delta_{\alpha,0}(y)) - (-1)^{ik}\chi_{\alpha}\mu(\delta_{\alpha,0}(x)\otimes \delta_{\alpha,0}(y))$$

for $x \in \widetilde{h}^i(X; \alpha)$ and $y \in \widetilde{h}^j(Y; \alpha)$;

 (Λ_3) it is quasi-associative in the sense that

(1. 6)
$$\mu_{\alpha}(\mu_{L} \otimes 1) = \mu_{L}(1 \otimes \mu_{\alpha}),$$

$$\mu_{\alpha}(\mu_{R} \otimes 1) = \mu_{\alpha}(1 \otimes \mu_{L}),$$

$$\mu_{R}(\mu_{\alpha} \otimes 1) = \mu_{\alpha}(1 \otimes \mu_{R}).$$

§ 2. Stable homotopy groups of some complexes

Let t be an integer. Assume that $t\alpha = 0$ for an element $\alpha \in \pi_{r+k-1}(S^r)$. Let C_{α} be the reduced mapping cone of α . For simplicity we denote $C = C_{\alpha}$. From Puppe's exact sequence and its dual associated with a cofibration

$$(2.1) S^r \xrightarrow{i} C \xrightarrow{\pi} S^{r+k}$$

we obtain the following table

Lemma 2.1. The groups $\{S^{r+j}, C\}$ and $\{C, S^{r+j}\}$ are isomorphic to the corresponding groups in the following table:

		generators of free part
$\{S^r, C\}$	Z	i
$\{S^{r+k}, C\}$	$Z + i (G_k/\eta \alpha)$	\widetilde{t}
$\{S^{r+j}, C\}$	finite group for $j eq 0$, k	
$\{C, S^{r+k}\}$	Z	π
$\{C, S^r\}$	$Z + (G_k/\eta\alpha)\pi$	\overline{t}
$\{C, S^{r+j}\}$	finite group for $j \neq 0$, k	

where \widetilde{t} and \widetilde{t} are defined by $n\widetilde{t} = t \, 1_S^{r+k}$ and \widetilde{t} $i = t \, 1_S^r$.

Morever we may chose \tilde{t} and \tilde{t} such that the relation

$$(2.2) i\overline{t} + \widetilde{t}\pi = t 1_C$$

holds in $\{C, C\}$, where 1_C is the homotopy class of the identity of C.

From Lemma 2.1 and dual Puppe's exact sequence associated with (2.1) it follows that

Lemma 2.2. The groups $\{S^{j}C, C\}$ is isomorphic to the corresponding groups in the following table:

		generators of free part
$\{C, S^kC\}$	Z	$(S^ki)\pi$
{C, C}	$Z + Z + i(Gk/\eta\alpha)$	$\widetilde{t}\pi$ (or $i\overline{t}$), 1_C
{SkC, C}	Z + finite group	
$\{S^jC, C\}$	finite group for $j \neq k$, 0 and $-k$	

From dual Puppe's exact sequence associated with (2. 1), we obtain the following exact sequence

$$\longrightarrow \{S^{r+2k}, C\} \xrightarrow{(S^k\pi)^*} \{S^kC, C\} \xrightarrow{(S^ki)^*} \{S^{r+k}, C\} \xrightarrow{(S^k\alpha)^*} \{S^{r+2k-1}, C\} \longrightarrow$$
 where groups $\{S^{r+2k-1}, C\}$ and $\{S^{r+2k}, C\}$ are finite by Lemma 2.1.

If $(S^k\alpha)^*\widetilde{t} = \widetilde{t}(S^k\alpha) = 0$, then there exists an element δ of $\{S^kC, C\}$ which satisfy the following relations

(2.3)
$$\delta(S^k i) = \widetilde{t} \text{ and } \pi \delta = S^k \widetilde{t}$$

and we can take δ as generator of free part in $\{S^kC, C\}$.

In the following, we consider $\alpha \in \pi_{r+k-1}(S^r)$ only as the element satisfying

(2.4)
$$k$$
 is an odd integer or $2\alpha = 0$.

Lemma 2.3. (Lemma 3.5 of [4]) Let α be an element of $\pi_{r+k-1}(S^r)$ satisfying (2.4). Assume that $k \leq 2r-1$, then there exists an element α' of $\pi_{2r+2k-1}(S^{2r})$ such that equality

$$(2.5) 1_C \wedge \alpha = (S^r i) \alpha' (S^{r+k-1}\pi)$$

holds in the homotopy set $\lceil S^{r+k-1}C, S^rC \rceil$.

Under the condition (2.4), from Lemma 2.3, we shall see that $C \land C$ is homotopy equivalent in stable range to the following mapping cone

(2. 6)
$$\overline{N}_{\alpha} = S^r C_{\alpha} \cup_{\overline{\alpha}} C(S^{r+k-1}C_{\alpha})$$

where $\overline{g} = (S^r i) \alpha^t (S^{r+k-1}\pi)$.

We denote also by N_{α} a subcomplex of \overline{N}_{α} obtained by removing the (2r+k)

-cell $S^rC - S^{2r}$, i.e.,

$$(2.7) N_{\alpha} = S^{2r} \bigcup_{g} C(S^{r+k-1}C_{\alpha})$$

where $g = \alpha'(S^{r+k-1}\pi)$.

The cell structures of \overline{N}_{α} and N_{α} can be interpreted as follows:

(2.8)
$$\overline{N}_{\alpha} = (S^r C_{\alpha} \vee S^{2r+k}) \cup e^{2r+2k}, \quad N_{\alpha} = (S^{2r} \vee S^{2r+k}) \cup e^{2r+2k},$$

where e^{2r+2k} is attached to $S^{2r} \bigvee S^{2r+k}$ by a map represented the sum of $\alpha' \in \{S^{2r+2k-1}, S^{2r}\}$ and $\alpha \in \{S^{r+k-1}, S^r\}$.

We use the following notations;

(2.9) $j: N_{\alpha} \longrightarrow \overline{N}_{\alpha}$, the inclusion, $p: \overline{N}_{\alpha} \longrightarrow S^{2r+k}$, the map collapsing N_{α} , $\overline{i_0}: S^rC \longrightarrow \overline{N}_{\alpha}$, $i_0: S^{2r} \longrightarrow N_{\alpha}$, the inclusions, $\overline{\pi_0}: \overline{N}_{\alpha} \longrightarrow S^{r+k}C$, $\pi_0: N_{\alpha} \longrightarrow S^{r+k}C$, the map collapsing S^rC or S^{2r} , $\overline{i_1}: S^{2r+k} \longrightarrow \overline{N}_{\alpha}$, $i_1: S^{2r+k} \longrightarrow N_{\alpha}$, the inclusions, $\pi_1: N_{\alpha} \longrightarrow Q = S^{2r} \cup e^{2r+2k}$, the map collapsing S^{2r+k} .

Hereafter, these mapping will be fixed as to satisfy the following relations;

(2.10)
$$\overline{\pi}_0 j = \pi_0, \quad j i_0 = \overline{i}_0(S^r i), \quad \overline{\pi}_0 i_1 = S^{r+k} i = \pi_0 i_1,$$

$$\overline{i}_1 = j i_1, \quad p \overline{i}_0 = S^r \pi \quad \text{and} \quad i_0 \alpha^l = -i_1(S^{r+k} \alpha).$$

Lemma 2.4. There exists an element ζ of $\{\overline{N}_{\alpha}, C \land C\}$ satisfying the following three conditions:

- (2.11) (i) ζ is a homotopy equivalence, i.e., there is an inverse $\xi \in \{C \land C, \overline{N}_{\alpha}\}$ of ζ such that $\xi \zeta = 1$ and $\zeta \xi = 1$,
 - (ii) $\zeta \bar{i}_0 = 1_C \wedge i$, thus $\xi(1_C \wedge i) = \bar{i}_0$

and

(iii)
$$(1_C \wedge \pi)\zeta = \overline{\pi}_0$$
, thus $\overline{\pi}_0 \xi = 1_C \wedge \pi$.

We put

$$(2.12) \zeta_0 = \zeta \,\overline{i}_1 \in \{S^{2r+k}, \ C \land C\} \text{ and } \xi_0 = p\xi \in \{C \land C, \ S^{2r+k}\}.$$

Then it follows from (ii) and (iii) of (2.11) that

$$(2.13) (1_C \wedge \pi) \zeta_0 = S^{r+k}i, \; \xi_0(1_C \wedge i) = S^r \pi.$$

We consider the Puppe's exact sequence associated with cofibration

$$(2.14) C \wedge S^r \xrightarrow{1_C \wedge i} C \wedge C \xrightarrow{1_C \wedge \pi} C \wedge S^{r+k}.$$

Then, from Lemma 2.1, (2.12) and (2,13), we obtain the following table.

		generators of free part
$\{S^{2r}, C \land C\}$	Z	$i \wedge i$
$\{S^{2r+k}, C \land C\}$	$Z+Z+(i\wedge i)\langle G_k/\eta\alpha\rangle$	$\widetilde{t} \wedge i$, ζ_0
$\{S^{2r+2k}, C \land C\}$	Z + finite group	
$\{S^j, C \land C\}$	finite group $j \neq 2r$, $2r + k$ and $2r + 2k$	
$\{C \land C, S^{2r+2k}\}$	Z	$\pi \wedge \pi$
$\{C \land C, S^{2r+k}\}$	$Z + Z + (G_k/\eta\alpha)(\pi/\pi)$	$\overline{t}/\sqrt{\pi}$, ξ_0
$\{C \land C, S^{2r}\}$	Z + finite group	

Lemma 2.5. The groups $\{S^j, C \land C\}$ and $\{C \land C, S^j\}$ are isomorphic to the corresponding groups in the following table:

where ζ_0 and ξ_0 are elements satisfying $(1_C \land \pi)\zeta_0 = S^{r+k}i$ and $\xi_0(1_C \land i) = S^r\pi$.

From the Puppe's exact sequence associated with (2.14) and Lemma 2.5 we can see easily the following lemma:

finite group for $j \ge 2r$, 2r + k and 2r + 2k

Lemma 2.6.

 $\{C \land C, S^j\}$

(i)
$$\{C \land C, C \land S^{r+k}\} = \{1_C \land \pi\} + \{i \ \overline{t} \land \pi\} + \{(S^{r+k}i)\xi_0\} + i(G_k/\eta\alpha)(\pi \land \pi)$$

 $\approx Z + Z + Z + finite \ group,$

(ii)
$$\{C \land S^r, C \land C\} = \{1_C \land i\} + \{\widetilde{t} \pi \land i\} + \{\xi_0(S^r \pi)\} + (i \land i)(G_k/\eta \alpha)\pi$$

 $\approx Z + Z + Z + \text{finite group.}$

Lemma 2.7. Let $\xi \in \{C \land C, \overline{N}_{\alpha}\}$ be an element satisfying (2.11)

(i) Any element
$$\xi' \in \{C \land C, \ \overline{N}_{\alpha}\}\$$
 satisfies (2.11) if and only if
$$\xi' = \xi + \overline{i}_0 \omega(1_C \land \pi)$$

for some $\omega \in \{S^{r+k}C, S^rC\}$.

- (ii) For any element $g \in G_k/\eta \alpha$, put $\xi^i_0 = \xi_0 + g(\pi/\pi)$ where $\xi_0 = p\xi$. Then there exists $\xi^i \in \{C/C, \overline{N}_\alpha\}$ such that satisfying (2.11) and (2.12).
- **Proof.** (i) Assume that ξ and ξ' satisfy (2.11). Since $(1_C \wedge i)^*$ $(\xi' \xi) = 0$, there exists $\Upsilon \in \{S^{r+k}C, \overline{N}_\alpha\}$ such that $(1_C \wedge \pi)^* \Upsilon = \xi' \xi$. From (iii) of (2.11), $(1_C \wedge \pi)^* (\overline{\pi}_0 \Upsilon) = 0$. On the other hand the homomorphism $(1_C \wedge \pi)^* : \{S^{r+k}C, S^{r+k}C\} \longrightarrow \{C \wedge C, S^{r+k}C\}$ is a monomorphism. Thus $\overline{\pi}_0 \Upsilon = 0$. Therefore Υ is contained in the image of $\overline{t}_{0^*} : \{S^{r+k}C, S^rC\} \longrightarrow \{S^{r+k}C, \overline{N}_\alpha\}$.

Conversely, if ξ satisfies (ii) and (iii) of (2.11), then so dose ξ' . Put $\zeta' = \zeta - (1_C \wedge i) \omega \overline{\pi}_0$, then ζ' is a homotopy inverse of ξ' .

(ii) The element $\xi' = \xi + \overline{i}_0(1_C \wedge g)(1_C \wedge \pi)$ is the required element.

We consider the ordinary homology group. Let ζ be an element of $\{\overline{N}_{\alpha}, C \wedge C\}$ satisfying (2.11) and ξ be a homotopy inverse of ζ . Let

$$\begin{pmatrix} e_r \wedge e_r \\ e_r \wedge e_{r+k}, & e_{r+k} \wedge e_r \\ e_{r+k} \wedge e_{r+k} \end{pmatrix}, \begin{pmatrix} e_r \wedge s_r \\ e_r \wedge s_{r+k}, & e_{r+k} \wedge s_r \\ e_{r+k} \wedge s_{r+k} \end{pmatrix}$$

be generators of the groups $H_*(C \wedge C)$ and $H_*(\overline{N}_{\alpha})$ respectively, where $e_i \wedge e_j$ and $e_i \wedge s_j$ is a generator of (i+j)-dim. group resp.

Using (2.11), for the ordinary homology map ξ_* and ζ_* induced by ξ and ζ resp., we obtain that

$$\xi_* \begin{pmatrix} e_r \wedge e_r \\ e_r \wedge e_{r+k}, & e_{r+k} \wedge e_r \end{pmatrix} = \begin{pmatrix} e_r \wedge s_{r+k} - ne_{r+k} \wedge s_r, & e_{r+k} \wedge s_r \\ e_{r+k} \wedge e_{r+k} \end{pmatrix}$$

$$\xi_* \begin{pmatrix} e_r \wedge s_r \\ e_r \wedge s_r \end{pmatrix} = \begin{pmatrix} e_r \wedge e_r \\ e_r \wedge e_r \end{pmatrix}$$

$$\xi_* \begin{pmatrix} e_r \wedge s_r \\ e_r \wedge s_{r+k} \wedge s_{r+k} \end{pmatrix} = \begin{pmatrix} e_r \wedge e_{r+k} + ne_{r+k} \wedge e_r, & e_{r+k} \wedge e_r \\ e_r \wedge s_{r+k} \wedge s_{r+k} \end{pmatrix}$$

for some integer n.

Using an element $\xi_0 = p\xi$ satisfying (2.13), we can put

(*) $(1_C \wedge \pi)T = a(1_C \wedge \pi) + b(i\overline{t} \wedge \pi) + c((S^{r+h}i)\xi_0) \mod i(G_h/\eta\alpha)(\pi \wedge \pi)$, for some integers a, b, and c by Lemma 2.6, where T = T(C, C). The homology maps induced by $(1_C \wedge \pi)T$, $1_C \wedge \pi$, $i\overline{t} \wedge \pi$ and $(S^{r+h}i)\xi_0$ can be expressed as follows:

$$(1_{C} \wedge \pi)_{*} T_{*} \begin{pmatrix} e_{r} \wedge e_{r} \\ e_{r+k} \wedge e_{r+k} \end{pmatrix} = \begin{pmatrix} 0, & (-1)^{r(r+k)} e_{r} \wedge s_{r+k} \\ (-1)^{r+k} e_{r+k} \wedge s_{r+k} \end{pmatrix},$$

$$(1_{C} \wedge \pi)_{*} \begin{pmatrix} e_{r} \wedge e_{r} \\ e_{r+k} \wedge e_{r+k} \end{pmatrix} = \begin{pmatrix} 0 \\ e_{r} \wedge s_{r+k}, & 0 \\ e_{r+k} \wedge s_{r+k} \end{pmatrix},$$

$$(\overline{tt} \wedge \pi)_{*} \begin{pmatrix} e_{r} \wedge e_{r+k}, & e_{r+k} \wedge e_{r} \\ e_{r+k} \wedge e_{r+k} \end{pmatrix} = \begin{pmatrix} 0 \\ e_{r} \wedge s_{r+k}, & 0 \\ e_{r+k} \wedge s_{r+k} \end{pmatrix},$$

$$(\overline{tt} \wedge \pi)_{*} \begin{pmatrix} e_{r} \wedge e_{r} \\ e_{r+k} \wedge e_{r+k} \end{pmatrix} = \begin{pmatrix} 0 \\ te_{r} \wedge s_{r+k}, & 0 \\ 0 \end{pmatrix},$$

$$(S^{r+k}i)_{*} \xi_{0*} \begin{pmatrix} e_{r} \wedge e_{r+k}, & e_{r+k} \wedge e_{r} \\ e_{r+k} \wedge e_{r+k} \end{pmatrix} = \begin{pmatrix} -ne_{r} \wedge s_{r+k}, & e_{r} \wedge s_{r+k} \\ e_{r+k} \wedge e_{r+k} \end{pmatrix},$$

$$(ig(\pi \wedge \pi))_{*} = 0 \text{ for any } g \in G_{k} / \eta \alpha.$$

From (*), we obtain the identity

$$(1_C \wedge \pi)_* T_* = a(1_C \wedge \pi)_* + b(i \overline{t} \wedge \pi)_* + c(S^{r+k}i)_* \xi_{0*}$$

of homology maps. Applying this to e_{r+k}/e_{r+k} , e_r/e_{r+k} and e_{r+k}/e_r , we have

$$(-1)^{r+k}e_{r+k}/s_{r+k} = ae_{r+k}/s_{r+k},$$

$$0 = ae_r/s_{r+k} + bte_r/s_{r+k} - cne_r/s_{r+k},$$

$$(-1)^{r(r+k)}e_r/s_{r+k} = ce_r/s_{r+k}.$$

This is,
$$a = (-1)^{r+k}$$
, $c = (-1)^{r(r+k)}$ and $b = -((-1)^{r+k} - (-1)^{r(r+k)}n)/t$ and

$$(1_{C} \wedge \pi)T = (-1)^{r+k}(1_{C} \wedge \pi) - n'(i\bar{t} \wedge \pi) + (-1)^{r(r+k)}(S^{r+k}i)\xi_{0}$$

mod. $i(G_k/\eta\alpha)(\pi \wedge \pi)$, where $n' = ((-1)^{r+k} - (-1)^{r(r+k)}n)/t$.

Here we can put

$$(1_C \wedge \pi)T = (-1)^{r+k}(1_C \wedge \pi) - n!(\overline{t} \wedge \pi) + (-1)^{r(r+k)}(S^{r+k}i)\xi_0 + ig(\pi \wedge \pi)$$

for some $g \in G_k/\eta\alpha$. If $g \neq 0$, put $\xi^i_0 = \xi_0 + (-1)^{r(r+k)}g(\pi \wedge \pi)$, then ξ^i_0 satisfies (2.13) and the equality

$$(1_C \wedge \pi)T = (-1)^{r+k}(1_C \wedge \pi) - n'(i\overline{t} \wedge \pi) + (-1)^{r(r+k)}(S^{r+k}i)\xi'_0$$

hold.

From (ii) of Lemma 2.7, there exists $\xi' \in \{C \land C, N_{\alpha}\}$ such that satisfy (2.11), (2.12) and induce the same homology maps as ξ .

Let $\zeta' \in \{N_{\alpha}, C \land C\}$ be the homotopy inverse of ζ' and $\zeta'_0 = \zeta' \bar{i}_1$. Then ζ' and ζ'_0 induce the same homology map as ζ and ζ_0 resp. Making use of ζ' , by a similar calculation we see that

$$T(1_{C} \wedge i) = (-1)^{r}(1_{C} \wedge i) - n''(\widetilde{t}\pi \wedge i) + (-1)^{r(r+k)}\zeta'_{0}(S^{r}\pi) + (i \wedge i)\mathcal{G}\pi$$

for some $g \in G_k/\eta \alpha$, where $n'' = ((-1)^r + (-1)^{r(r+k)}n)/t$.

Hence we get the Lemma:

Lemma 2.8. There exists $\xi \in \{C \land C, \overline{N}_{\alpha}\}$ and its inverse $\zeta \in \{\overline{N}_{\alpha}, C \land C\}$ which satisfy (2.11) and the following relations:

(i)
$$(1_C \wedge \pi)T = (-1)^{r+k} (1_C \wedge \pi) - n'(i\overline{t} \wedge \pi) + (-1)^{r(r+k)} (S^{r+k}i)\xi_0,$$

(ii)
$$T(1_{\mathcal{C}} \wedge i) = (-1)^{r} (1_{\mathcal{C}} \wedge i) - n''(\widetilde{t}\pi \wedge i) + (-1)^{r(r+k)} \zeta_{0}(S^{r}\pi) + (i \wedge i)g\pi$$

for some $g \in G_k/\eta \alpha$, where $n' = ((-1)^{r+k} - (-1)^{r(r+k)}n)/t$, $n'' = ((-1)^r + (-1)^{r(r+k)}n)/t$, $\xi_0 = p\xi$ and $\zeta_0 = \zeta \overline{i}_1$.

Now we consider the element $\alpha \in \pi_{r+k-1}(S^r)$ satisfying

(2. 15)
$$1_{\mathcal{C}} \wedge \alpha = 0 \text{ and } \widetilde{t}(S^{k}\alpha) = 0$$

where $t\alpha = 0$ for an integer t.

Then the cell structure of \overline{N}_{α} can be interpreted as follows

$$\overline{N}_{\alpha} = S^r C_{\alpha} \bigvee S^{r+k} C_{\alpha}$$

Thus there exists a map $\pi_0^{-1}: S^{r+h}C \longrightarrow \overline{N}_\alpha$ such that

(2.16)
$$\pi_0^{-1}(S^{r+k}i) = \overline{i}_1 \text{ and } \overline{\pi}_0\pi_0^{-1} = 1_S^{r+k}C$$

i.e., π_0^{-1} is the inclusion.

Making use of (2.15) we have the following commutative diagram associated with (2.14) and (2.1) in which all rows and all columns are exact:

From (2.11) (2.12) and (2.16) we have

(2.17)
$$(S^{r+k}i)^*(\zeta \pi_0^{-1}) = \zeta_0 \text{ and } (1_C \wedge \pi)^*(\zeta \pi_0^{-1}) = 1_S^{r+k}C.$$

From (2.2) and the commutativity of above diagram, we have

$$(2.18) (S^{r+k}i)^*(\delta \wedge i) = \widetilde{t} \wedge i.$$

Proposition 2.9. Let k be an odd integer. Assume that $\alpha \in \pi_{r+k-1}(S^r)$ satisfies (2, 15). Then there exists an element $\gamma \in \{S^{r+k}C, C \land C\}$ such that

$$(1_C \wedge \pi) \gamma = (-1)^{r+k} 1_{S^{r+k}C},$$

(ii)
$$(1_C \wedge \pi) T \gamma = 1_S r + k_C$$

and

(iii)
$$T(1_{C} \wedge i) + (-1)^{r+1} (1_{C} \wedge i) = (-1)^{k(r+k)} \gamma(S^{r+k}i)(S^{r}\pi) + (i \wedge i) g\pi$$

where T = T(C, C) and some $g \in G_k/\eta \alpha$.

Proof. From Lemma 2.8, we have

$$(2.19) T(1_C \wedge i) + (-1)^{r+1}(1_C \wedge i) = (-1)^{k(r+k)} \gamma_0(S^r \pi) + (i \wedge i) g\pi$$

where
$$\gamma_0 = (-1)^{r+k}\zeta_0 + (-1)^{(r+1)(k+1)}n_0(\widetilde{t}/\sqrt{t}), \quad n_0 = (1+(-1)^{rk}n)/t.$$

We consider an element

$$\gamma = (-1)^{r+k} \zeta \pi_0^{-1} + (-1)^{(r+1)(k+1)} n_0(\delta \wedge i)$$

of $\{S^{r+k}C, C \land C\}$. Then, from (2.17) and (2.18), we obtain that $(S^{r+k}i)^* = \gamma_0$.

Thus we have (iii).

Using (2.17) and $(1_C \wedge \pi)(1_C \wedge i) = 0$, it follows that

$$(2.20) (1_C \wedge \pi) \gamma = (-1)^{r+k} 1_S^{r+k} C.$$

From (i) of Lemma 2.8, (2.20) and (2.3), we obtain

$$(1_C \wedge \pi)T = 1_{S^{r+k}C}$$

Proposition 2.10. Let k be an even integer. Assume that $\alpha \in \pi_{r+k-1}(S^r)$ satisfies (2.15) and t = 2. Then there exists an element $\gamma \in \{S^{r+k}C, C \land C\}$ such that

(i)
$$(1_C \wedge \pi) \gamma = (-1)^{r+k} 1_{S^{r+k}C}$$

(ii)
$$(1_C \wedge \pi) T \gamma = 1_{S^{r+k}C}$$

and

(iii)
$$T(1_C \wedge i) + (-1)^r (1_C \wedge i) = \gamma (S^{r+k}i)(S^r \pi) + (-1)^r (i \overline{t} \wedge i) + (i \wedge i) g \pi$$

where T = T(C, C) and some $g \in G_k/\eta \alpha$.

Proof. From (ii) of Lemma 2, 8 and (2, 2), we have

(2. 19)'
$$T(1_{C} \wedge i) = (-1)^{r} (1_{C} \wedge i) + \gamma_{0} (S^{r}\pi) - (-1)^{r} (\widetilde{t}\pi \wedge i) + (i \wedge i) g\pi$$
$$= (-1)^{r+k} (1_{C} \wedge i) + \gamma_{0} (S^{r}\pi) + (-1)^{r} (i \overline{t} \wedge i) + (i \wedge i) g\pi$$

where
$$\gamma_0 = (-1)^r (1 - n_0) (\widetilde{t} \wedge i) + (-1)^{r(r+k)} \zeta_0$$
, $n_0 = (1 + (-1)^{rk} n)/t$.

We consider an element

$$\gamma = (-1)^{r(r+k)} \zeta_{\pi_0-1} + (-1)^r (1-n_0) (\delta \wedge i)$$

of $\{S^{r+k}C, C \wedge C\}$.

By a similar calculation as in Proposition 2.9 we have the results. Next we consider the element $\alpha \in \pi_{r+k-1}(S^r)$ satisfying

(2.21)
$$1_C \wedge \alpha = (S^r i) \alpha^r (S^{r+h-1}\pi) \text{ and } \widetilde{t} \alpha = 0$$

for some non trivial element $\alpha' \in \pi_{2r+2k-1}(S^{2r})$ and the integer t such that $t\alpha = 0$ (c. f., Lemma 2.3).

We put

(2.22)
$$Q = S^{2r} \bigcup_{\alpha'} e^{2r+2k}$$

and denote by

$$(2.23) i': S^{2r} \longrightarrow Q \text{ and } \pi': Q \longrightarrow S^{2r+2k}$$

the canonical inclusion and the map collapsing S^{2r} to a point resp. Then from (2,9) we have following cofibrations

$$(2.24) S^{2r} \xrightarrow{i'} Q \xrightarrow{\pi'} S^{2r+2k},$$

$$(2,25) S^{2r+k} \xrightarrow{i_1} N_{\alpha} \xrightarrow{\pi_1} Q.$$

Making use of (2.21) we have the following commutative diagram associated with (2.14) and (2.25) in which all rows and all columns are exact:

From the Puppe's exact sequence associated with the cofibration (2.24) and Lemma 2.1, we obtain that

$$\{Q, C \land S^{r+k}\} = Z + i(G_k/\eta\alpha)\pi'$$

and $(S^{r+h}\overline{t})\pi^{l}$ is a generator of free part.

On the other hand, the right column in the above diagram splits. Thus, from (2.10), Lemma 2.1 and the relation $\pi'\pi_1 = (S^{r+k}\pi)\pi_0$, we obtain that

$$\{N_{\alpha}, C \wedge S^{r+k}\} = Z + Z + i(G_k/\eta\alpha)\pi\pi_0$$

and $(\widetilde{t}\pi)\pi_0$ and π_0 are generators of free parts.

From (2.3) and (2.10), we obtain

$$i_1^*(S^r\delta)\pi_0 = (S^r\delta)\pi_0 i_1 = (S^r\delta)(S^{r+k}i) = S^r\widetilde{t}$$

Thus it follows from commutativity of the above diagram that

$$(2.8) i_1^*((1_C \wedge i)(S^r \delta)\pi_0) = \widetilde{t} \wedge i.$$

Proposition 2.11. Let k be an odd integer. Assume that an element $\alpha \in \pi_{r+k-1}(S^r)$ satisfies (2, 21). Then there exists an element β of $\{N_\alpha, C \land C\}$ such that

$$(i) \qquad (1_C \wedge \pi)\beta = (-1)^{r+k}\pi_0,$$

(ii)
$$(1_C \wedge \pi) T \beta = \pi_0$$

and

(iii)
$$T(1_C \wedge i) + (-1)^{r+1} (1_C \wedge i) = (-1)^{k(r+k)} \beta i_1 (S^r \pi) + (i \wedge i) g \pi$$

where T = T(C, C) and some $g \in G_k/\eta\alpha$ (c. f., Lemma 2.8).

Proof. Let ζ be a homotopy equivalence given in Lemma 2.8. Then we put

$$\beta = (-1)^{(r+1)(k+1)} n_0(1_C \wedge i)(S^r \delta) \pi_0 + (-1)^{r+k} \zeta_j \in \{N_\alpha, C \wedge C\}$$

where $n_0 = (1 + (-1)^{rk}n)/t$. Then using (2.19), (2.28), (2.12) and Lemma 2.8, the proof of this proposition is completely parallel to it of Proposition 2.9.

Proposition 2.12. Let k be an even integer. Assume that an element $\alpha \in \pi_{r+k-1}(S^r)$ satisfies (2,21) and t=2. Then there exists an element β of $\{N_\alpha, C \land C\}$ such that

(i)
$$(1_C \wedge \pi)\beta = (-1)^{r+k}\pi_0,$$

(ii)
$$(1_C \wedge \pi) T \beta = \pi_0$$

and

(iii)
$$T(1_C \wedge i) + (-1)^r (1_C \wedge i) = (-1)^{k(r+k)} \beta i_1 (S^r \pi) + (-1)^r i \, \overline{t} \wedge i + (i \wedge i) g \, \pi$$

where T = T(C, C) and some $g \in G_k/\eta \alpha$ (c. f., Lemma 2.8).

Proof. For ζ in Lemma 2.8, we put

$$\beta = (-1)^r (1 - n_0) (1_C \wedge i) (S^r \delta) \pi_0 + (-1)^{r(r+h)} \zeta j,$$

where $n_0 = (1 + (-1)^{rk}n)/t$. Then using (2.19)', (2.28) and (2.12), similarly as in Proposition 2.10 we have the results.

§ 3. Existence of the admissible multiplication in $\tilde{h}^*(\ ; \alpha)$

Let μ be an associative multiplication in a reduced generalized cohomology theory $\{\widetilde{h}^*, \sigma\}$. In this paragraph we define a multiplication μ_{α} in $\widetilde{h}^*(:\alpha)$ for some $\alpha \in \pi_{r+k-1}(S^r)$, and give a sufficient condition for μ_{α} to be admissible.

Let A and B be finite CW-complexes with base points, for any element φ of $\{A, B\}$, we define a homomorphism

$$\varphi^{**}: \widetilde{h}^*(X \wedge B) \longrightarrow \widetilde{h}^*(X \wedge A)$$

by the formula

$$\varphi^{**} = \sigma^{-m}(1_X \wedge f)\sigma^m$$

where $f: S^m A \longrightarrow S^m B$ is a map representing φ . The definition of φ^{**} dose not depend on the choice of f.

Making use of an element $\gamma \in \{S^{r+k}C, C \land C\}$, we define a map

as the compsition

$$\mu_{\alpha} = (-1)^{i(r+k)} \sigma^{-(r+k)} (1_{X \wedge Y} \wedge \mathring{r})^* (1_X \wedge T' \wedge 1_C)^* \mu :$$

$$\widetilde{h}^i(X ; \alpha) \otimes \widetilde{h}^j(Y ; \alpha) = \widetilde{h}^{i+r+k} (X \wedge C) \otimes \widetilde{h}^{j+r+k} (Y \wedge C)$$

$$\longrightarrow \widetilde{h}^{i+j+2r+2k} (X \wedge C \wedge Y \wedge C)$$

$$\longrightarrow \widetilde{h}^{i+j+2r+2k} (X \wedge Y \wedge C \wedge C)$$

$$\longrightarrow \widetilde{h}^{i+j+2r+2k}(X \wedge Y \wedge C \wedge S^{r+k})$$

$$\longrightarrow \widetilde{h}^{i+j+r+k}(X \wedge Y \wedge C) = \widetilde{h}^{i+j}(X \wedge Y; \alpha)$$

where T' = T(Y, C).

Obviously μ_{α} is linear and natural with respect to both variable.

Proposition 3.1. Assume that $\gamma \in \{S^{r+k}C, C \land C\}$ satisfies

$$(3.2) \qquad (-1)^{r+k} (1_C \wedge \pi) \gamma = 1_S^{r+k} = (1_C \wedge \pi) T \gamma$$

where T = T(C, C). Then the map μ_{α} of (3.1) is a multiplication satisfying (Λ_1) and (Λ_2) .

Proof. To prove (Λ_1) , putting T' = T(Y, C), T = T(C, C). By definition of ρ_{α} and μ_{α} , we have

$$\mu_{\alpha}(\rho_{\alpha} \otimes 1) = \sigma^{-(r+k)} (1_{X \wedge Y} \wedge 7)^* (1_{X} \wedge T' \wedge 1_{C})^* \mu((1_{X} \wedge \pi) \sigma^{r+k} \otimes 1_{Y \wedge C})$$

$$= \sigma^{-(r+k)} \gamma^{**} (1_{X \wedge Y} \wedge T)^* (1_{X \wedge Y} \wedge 1_{C} \wedge \pi)^* \sigma^{r+k} \mu$$

$$= \sigma^{-(r+k)} ((1_{C} \wedge \pi) T)^{**} \sigma^{r+k} \mu$$

$$= \mu = \mu_{L} \qquad \text{by (3. 2).}$$

Similarly, using the relation $(1_C \wedge \pi)^{\gamma} = (-1)^{r+k} 1_{S^{r+k}C}$, we obtain that

$$\mu_{\alpha}(1 \otimes \rho_{\alpha}) = \mu_{R}.$$

Then it follows that $\rho_{\alpha}(1)$ is the bilatiral unit of μ_{α} (see [2]).

The compatibility with suspension isomorphism σ_{α} and (Λ_3) are verified directly from the definition of μ_{α} , σ_{α} and the associativity of μ .

Proposition 3.2. It there exists an element $\gamma \in \{S^{r+k}C, C \land C\}$ satisfying the relation

$$(3.3) T(1_C \wedge i) + (-1)^{r+k} (1_C \wedge i) = (-1)^{k(r+k)} \gamma (S^{r+k}i) (S^r \pi) + (-1)^{r(r+k)} (i \wedge i) (S^r \chi)$$

for some $\chi \in \{C, S^r\}$, then map μ_{α} of (3.1) satisfies (12) with associated cohomology operation

$$\chi_{\alpha} = (-1)^{i(r+k)} \chi^{**} \sigma^{r} : \widetilde{h}^{i}() \longrightarrow \widetilde{h}^{i-k}(; \alpha)$$

where T = T(C, C).

Proof. We put T' = T(Y, C). On $\widetilde{h}^{i}(X; \alpha) \otimes \widetilde{h}^{j}(Y; \alpha)$, we have

$$\begin{split} \mu_{L}(\delta_{\alpha,0} \otimes 1) + (-1)^{ik} \mu_{R}(1 \otimes \delta_{\alpha,0}) \\ &= (-1)^{i(r+k)} \sigma^{-r} (1_{X \wedge Y} \wedge 1_{C} \wedge i)^{*} (1_{X \wedge Y} \wedge T)^{*} (1_{X} \wedge T' \wedge 1_{C})^{*} \mu \\ &+ (-1)^{i(r+k)+r+k} \sigma^{-r} (1_{X \wedge Y} \wedge 1_{C} \wedge i)^{*} (1_{X} \wedge T' \wedge 1_{C})^{*} \mu \\ &= (-1)^{i(r+k)} \sigma^{-r} (T(1_{C} \wedge i) + (-1)^{r+k} (1_{C} \wedge i))^{**} (1_{X} \wedge T' \wedge 1_{C})^{*} \mu \\ &= (-1)^{i(r+k)} \sigma^{-r} ((-1)^{k(r+k)} \gamma (S^{r+k}i) (S^{r}\pi))^{**} (1_{X} \wedge T' \wedge 1_{C})^{*} \mu \\ &+ (-1)^{i(r+k)} \sigma^{-r} ((-1)^{r(r+k)} (i \wedge i) (S^{r}\chi))^{**} (1_{X} \wedge T' \wedge 1_{C})^{*} \mu \end{split}$$

$$= (-1)^{i(r+k)} (1 \wedge \pi)^* \sigma^k (1 \wedge i)^* \sigma^{-(r+k)} (1 \wedge 7)^* (1 \wedge T' \wedge 1_C)^* \mu$$

$$+ (-1)^{i(r+k)+r(r+k)} \chi^{**} \sigma^{-r} (i \wedge i)^{**} (1 \wedge T' \wedge 1_C)^* \mu$$

$$= \delta_{\alpha} \mu_{\alpha} + (-1)^{i(r+k)+r(r+k)} \chi^{**} \sigma^{r} \sigma^{-2r} (i \wedge i)^{**} (1 \wedge T' \wedge 1_C)^* \mu.$$

On the other hand we have

$$\mu(\delta_{\alpha,0} \otimes \delta_{\alpha,0}) = (-1)^{(i+j)(r+k)+ir+r(r+k)} \sigma^{-2r} (i \wedge i)^{**} (1 \wedge T' \wedge 1_C)^* \mu.$$

Here we put

$$\chi_{\alpha} = (-1)^{i(r+k)} \chi^{**} \sigma^r : \widetilde{h}^{i}() \longrightarrow \widetilde{h}^{i-k}(; \alpha),$$

then we have

$$\delta_{\alpha}\mu_{\alpha}=\mu_{L}(\delta_{\alpha,0}\otimes 1)+(-1)^{i\,k}\mu_{R}(1\otimes\delta_{\alpha,0})-(-1)^{i\,k}\chi_{\alpha}\mu(\delta_{\alpha,0}\otimes\delta_{\alpha,0}).$$

Clearly χ_{α} is a cohomology operation and the relation

$$\chi_{\alpha}\mu = \mu_{R}(\chi_{\alpha} \otimes 1) = (-1)^{ik} \mu_{L}(1 \otimes \chi_{\alpha})$$

holds.

As a consequence of Proposition 2.9, 2.10, 3.1 and Proposition 3.2 we obtain the following theorem:

Theorem 3.3. Assume that an element $\alpha \in \pi_{r+k-1}(S^r)$ satisfies (2.15) and t=2 if k is even. Then there exists an admissible multiplication μ_{α} in $\widetilde{h}^*(\cdot; \alpha)$.

Now we consider an element $\alpha \in \pi_{r+k-1}(S^r)$ satisfying (2.21), i. e., $1_C \land \alpha = (S^r i)\alpha'(S^{r+k-1}\pi)$ and $\widetilde{t}\alpha = 0$ for some $\alpha' \in \pi_{2r+2k-1}(S^{2r})$ and the integer t such that $t\alpha = 0$.

Using the notation (2.9), cofibration

$$S^{2r} \xrightarrow{i_0} N_{\alpha} \xrightarrow{\pi_0} S^{r+k}C$$

yields, for any finite CW-complex W with a base point, a cofibration

$$(3.4) W \wedge S^{2r} \xrightarrow{1 \wedge i_0} W \wedge N_{\alpha} \xrightarrow{1 \wedge \pi_0} W \wedge S^{r+k}C.$$

If $(\alpha'\pi)^{**}=0$ in \widetilde{h}^* , then the \widetilde{h}^* -cohomology exact sequence associated to the above cofibration (3.4) breaks into the following exact sequence

$$(3.5) 0 \longrightarrow \widetilde{h}^{n}(W \wedge S^{r+k}C) \stackrel{(1 \wedge \pi_{0})^{*}}{\longrightarrow} \widetilde{h}^{n}(W \wedge N_{\alpha}) \stackrel{(1 \wedge i_{0})^{*}}{\longrightarrow} \widetilde{h}^{n}(W \wedge S^{2r}) \longrightarrow 0.$$

By (3.5) for $W = S^0$ and n = 2r, it follows that

Lemma 3.4. (i) If $(\alpha'\pi)^{**} = 0$ in h^* , then there exists $\varphi_0 \in h^{2r}(N_\alpha)$ satisfying

$$(3.6) i_0 * \varphi_0 = \sigma^{2r} 1,$$

(ii) If $\alpha'^{**} = 0$ in \widetilde{h}^* , then there exists $\varphi_0 \in \widetilde{h}^{2r}(N_\alpha)$ satisfying

$$(3.6)'$$
 $i_0*\varphi_0 = \sigma^{2r}1$ and $i_1*\varphi_0 = 0$.

Proof. See Lemma 4.2 of [2].

Making use of φ_0 of Lemma 3.4, hence at least under the assumption of $(\alpha'\pi)^{**}=0$, we define a homorphism

$$\varphi_W: \widetilde{h}^n(W \wedge N_\alpha) \longrightarrow \widetilde{h}^n(W \wedge S^{r+k}C)$$

by the formula

$$(3.7) \varphi_W(x) = (1_W \wedge \pi_0)^{*-1} (x - \mu(\sigma^{-2r}(1_W \wedge i_0)^* x \otimes \varphi_0))$$

for $x \in h^n(W \wedge N_\alpha)$.

Since $x - \mu(\sigma^{-2r}(1_W \wedge i_0)^* x \otimes \varphi_0)$ is in the kernel of $(1_W \wedge i_0)^*$ and $(1_W \wedge \pi_0)^*$ is monomorphic, the map φ_W of (3.7) is well-defined homomorphism.

Lemma 3.5. (i) φ_W is a left inverse of $(1_W \wedge \pi_0)^*$, i.e., $\varphi_W (1_W \wedge \pi_0)^* = an$ identity map; hence the sequence of (3.5) splits:

$$\widetilde{h}^n(W \wedge N_\alpha) = \widetilde{h}^n(W \wedge S^{r+k}C) \oplus \widetilde{h}^n(W \wedge S^{2r}).$$

(ii) φ_W is natural in the sense that

$$(f \wedge S^{r+k} 1_C)^* \varphi_W = \varphi_{W'} (f \wedge 1_{N_\alpha})^*,$$

where $f: W' \longrightarrow W$.

(iii) φ_W is compatible with the suspension in the sense that

$$(1_W \wedge T')^* \sigma \varphi_W = \varphi_{SW} (1_W \wedge T'')^* \sigma$$

where $T' = T(S^1, S^{r+k}C)$ and $T'' = T(S^1, N_\alpha)$.

(iv) The relation

$$\mu(y \otimes \varphi_w(x)) = \varphi_{V \wedge w} \mu(y \otimes x)$$

holds, where $x \in \widetilde{h}^n(W \wedge N_\alpha)$ and $y \in \widetilde{h}^m(Y)$.

(v) If φ_0 satisfies (3.6), then the relation

$$(1_W \wedge S^{r+k}i)^* \varphi_W = (1_W \wedge i_1)^*$$

holds for the inclusions $i: S^r \longrightarrow C$ and $i_1: S^{2r} \longrightarrow N_\alpha$.

(vi) Assume that μ is commutative. Then the relations hold;

(a)
$$\mu(z \otimes \varphi_0) = T' * \mu(\varphi_0 \otimes z),$$

where $z \in \widetilde{h}^i(Z)$ and $T' = T(Z, N_{\alpha})$.

(b)
$$(1_W \wedge T'')^* \mu(\varphi_W(x) \otimes z) = \varphi_{W \wedge Z} (1_W \wedge T')^* \mu(x \otimes z),$$

where $x \in h^n(W \wedge N_\alpha)$, $z \in h^i(Z)$, $T' = T(Z, N_\alpha)$ and $T'' = T(Z, S^{r+k}C)$.

Proof. By a similar calcuation to Lemma 4.3, 4.4, 4.5 and Lemma 4.6 of [27], we have the results.

Making use of the homomorphism φ_W defined by (3.7) and the element β of $\{N_\alpha, C \land C\}$, we fefine a map

(3.8)
$$\mu_{\alpha}: \widetilde{h}^{i}(X; \alpha) \otimes \widetilde{h}^{j}(Y; \alpha) \longrightarrow \widetilde{h}^{i+j}(X \wedge Y; \alpha)$$

as the composition

$$\begin{split} \mu_{\alpha} &= (-1)^{i(r+k)} \sigma^{-(r+k)} \, \varphi_{X \wedge Y} (1_{X \wedge Y} \wedge \beta)^* (1_X \wedge T' \wedge 1_C)^* \mu : \\ \widetilde{h}^i(X \ ; \ \alpha) \otimes \widetilde{h}^{j}(Y \ ; \ \alpha) &= \widetilde{h}^{i+r+k} (X \wedge C) \otimes \widetilde{h}^{j+r+k} (Y \wedge C) \\ &\longrightarrow \widetilde{h}^{i+j+2r+2k} (X \wedge C \wedge Y \wedge C) \\ &\longrightarrow \widetilde{h}^{i+j+2r+2k} (X \wedge Y \wedge C \wedge C) \\ &\longrightarrow \widetilde{h}^{i+j+2r+2k} (X \wedge Y \wedge N_{\alpha}) \\ &\longrightarrow \widetilde{h}^{i+j+2r+2k} (X \wedge Y \wedge S^{r+k} C) \\ &\longrightarrow \widetilde{h}^{i+j+r+k} (X \wedge Y \wedge C) &= \widetilde{h}^{i+j} (X \wedge Y \ ; \ \alpha), \end{split}$$

where T' = T(Y, C).

 μ_{α} is defined only if $(\alpha'\pi)^{**} = 0$.

The definition of μ_{α} depends on the choices of φ_0 and β . However we fix during the subsequent proofs of properties of an admissible multiplication.

Clearly μ_{α} is linear and natural with respect to both variables.

Proposition 3.6. If an element $\beta \in \{N_{\alpha}, C \land C\}$ satisfies

$$(3.9) (1_C \wedge \pi) T \beta = \pi_0 = (-1)^{r+k} (1_C \wedge \pi) \beta,$$

where T = T(C, C), $\pi_0 : N_\alpha \longrightarrow S^{r+k}C$ is the map collapsing S^{2r} , then the map μ_α of (3,8) is a multiplication satisfying (1).

Proof. (See Theorem 4.7 of [2]) From (i) of Lemma 3.5 and (3.9) we can see (Λ_1) directly. From (ii) and (iii) of Lemma 3.5 it follows that the map μ_{α} of (3.8) is compatible with the suspension isomorphism σ_{α} .

Proposition 3.8. If μ is a commutative multiplication, then for any $\beta \in \{N_{\alpha}, C \land C\}$ the map μ_{α} of (3.8) satisfies (Λ_3) .

Proof. (See Theorem 4.10 of [2]) It follows from (iv) and (vi) of Lemma 3.5 that μ_{α} satisfy (Λ_3).

Proposition 3.8. Let $\alpha^{i**} = 0$ in \widetilde{h}^* . Assume that $\beta \in \{N\alpha, C \land C\}$ satisfies

(3.10)
$$T(1_C \wedge i) + (-1)^{r+k} (1_C \wedge i) = (-1)^{k(r+k)} \beta i_1(S^r \pi) + (-1)^{r(r+k)} (i \wedge i) (S^r \chi)$$

for some $\chi \in \{C, S^r\}$, where T = T(C, C). Then the map μ_{α} of (3.8) satisfies (Λ_2) with associated cohomology operation

$$\chi_{\alpha} \! = \! (-1)^{i(r+k)} \chi^{**} \sigma^r : \widetilde{h}^{i}(\quad) \longrightarrow \widetilde{h}^{i-k}(\quad;\alpha).$$

Proof. (See Theorem 4.9 of [2]) It follows from (v) of Lemma 3.5 that satisfy (A_2) .

As a consequence of Proposition 2.11, 2.12, 3.6, 3.7 and Proposition 3.8 we have

Theorem 3.9. Let μ be a commutative, associative multiplication in a reduced generalized cohomology theory \widetilde{h}^* . Assume that $\alpha \in \pi_{r+k-1}(S_r)$ satisfies (2.21) and the order of α is two if k is an even integer. If $\alpha^{l**} = 0$ in \widetilde{h}^* , then the admissible multiplication μ_{α} exist in \widetilde{h}^* (; α).

References

- 1. S. ARAKI and H. Toda, Multiplicative structures in mod q cohomology theories I, and II, Osaka J. Math., 2 (1965), 71–115, and 3 (1966) 81–120.
- 2. N. ISHIKAWA, Multiplications in cohomology theories with coefficient maps, J. Math. Soc. Japan, 22 (1970) 456-489.
- Existence of admissible multiplication in η²-coefficient cohomology theories, Math. Reports College of Gen. Education Kyushu Univ., vol VIII (1971) 1-9.
- 4. H. Toda, Composition methods in homotopy groups of sheres, Ann. of Math. Studies No. 49, Princeton, 1962.