276 research outputs found

    On the Phononic Bandgap of Carbon Nanotubes

    Get PDF
    On the phononic bandgap of carbon nanotubes (CNTs), we show in what chirality CNTs have phononic bandgaps and its dependence on the diameters of CNTs. We find that, though the rule where CNTs have phononic bandgaps is the same as in the electronic structure case, the diameter dependence is different. The phononic bandgaps of the zigzag-CNTs reveal “three” kinds of diameter dependence due to the anisotropy of graphene phonon band around the K point in k-space. We also show the crossover from one- to two-dimensional characteristics in phononic bandgaps

    Prognostic value of OCT4A and SPP1C transcript variant co-expression in early-stage lung adenocarcinoma

    Get PDF
    Background Octamer-binding transcription factor 4A (OCT4A) is essential for cell pluripotency and reprogramming both in humans and mice. To date, however, the function of human OCT4 in somatic and/or tumour tissues is largely unknown. Methods RT-PCR was used to identify full-length splice forms of OCT4 transcripts in normal and cancer cells. A FLAG-tagged OCT4 genomic transgene was used to identify OCT4-positive cancer cells. A potential role for OCT4 in somatic cancer cells was examined by cell ablation of OCT4-positive cells using promoter-driven diphtheria toxin A. OCT4 and secreted phosphoprotein 1 (SPP1) transcripts in early-stage lung adenocarcinoma tumours were analysed and compared with pathohistological features. Results The results show that, unlike in murine cells, OCT4A and OCT4B variants are transcribed in both human cancer cells and in adult tissues such as lung, kidney, uterus, breast, and eye. We found that OCT4A and SPP1C are co-expressed in highly aggressive human breast, endometrial, and lung adenocarcinoma cell lines, but not in mesothelial tumour cell lines. Ablation of OCT4-positive cells in lung adenocarcinoma cells significantly decreased cell migration and SPP1C mRNA levels. The OCT4A/SPP1C axis was found in primary, early-stage, lung adenocarcinoma tumours. Conclusions Co-expression of OCT4 and SPP1 may correlate with cancer aggressiveness, and the OCT4A/SPP1C axis may help identify early-stage high-risk patients with lung adenocarcinoma. Contrary to the case in mice, our data strongly suggest a critical role for OCT4A and SPP1C in the development and progression of human epithelial cancers

    Differential responses of seabirds to climate variability over two years in the southeast Bering Sea

    Get PDF
    第6回極域科学シンポジウム分野横断セッション:[IA] 急変する北極気候システム及びその全球的な影響の総合的解明―GRENE北極気候変動研究事業研究成果報告2015―11月19日(木) 国立極地研究所1階交流アトリウ

    Interplay of a non-conjugative integrative element and a conjugative plasmid in the spread of antibiotic resistance via suicidal plasmid transfer from an aquaculture Vibrio isolate

    Get PDF
    The capture of antimicrobial resistance genes (ARGs) by mobile genetic elements (MGEs) plays a critical role in resistance acquisition for human-associated bacteria. Although aquaculture environments are recognized as important reservoirs of ARGs, intra- and intercellular mobility of MGEs discovered in marine organisms is poorly characterized. Here, we show a new pattern of interspecies ARGs transfer involving a ‘non-conjugative’ integrative element. To identify active MGEs in a Vibrio ponticus isolate, we conducted whole-genome sequencing of a transconjugant obtained by mating between Escherichia coli and Vibrio ponticus. This revealed integration of a plasmid (designated pSEA1) into the chromosome, consisting of a self-transmissible plasmid backbone of the MOBH group, ARGs, and a 13.8-kb integrative element Tn6283. Molecular genetics analysis suggested a two-step gene transfer model. First, Tn6283 integrates into the recipient chromosome during suicidal plasmid transfer, followed by homologous recombination between the Tn6283 copy in the chromosome and that in the newly transferred pSEA1. Tn6283 is unusual among integrative elements in that it apparently does not encode transfer function and its excision barely generates unoccupied donor sites. Thus, its movement is analogous to the transposition of insertion sequences rather than to that of canonical integrative and conjugative elements. Overall, this study reveals the presence of a previously unrecognized type of MGE in a marine organism, highlighting diversity in the mode of interspecies gene transfer

    Interplay of a non-conjugative integrative element and a conjugative plasmid in the spread of antibiotic resistance via suicidal plasmid transfer from an aquaculture Vibrio isolate

    Get PDF
    <div><p>The capture of antimicrobial resistance genes (ARGs) by mobile genetic elements (MGEs) plays a critical role in resistance acquisition for human-associated bacteria. Although aquaculture environments are recognized as important reservoirs of ARGs, intra- and intercellular mobility of MGEs discovered in marine organisms is poorly characterized. Here, we show a new pattern of interspecies ARGs transfer involving a ‘non-conjugative’ integrative element. To identify active MGEs in a <i>Vibrio ponticus</i> isolate, we conducted whole-genome sequencing of a transconjugant obtained by mating between <i>Escherichia coli</i> and <i>Vibrio ponticus</i>. This revealed integration of a plasmid (designated pSEA1) into the chromosome, consisting of a self-transmissible plasmid backbone of the MOB<sub>H</sub> group, ARGs, and a 13.8-kb integrative element Tn<i>6283</i>. Molecular genetics analysis suggested a two-step gene transfer model. First, Tn<i>6283</i> integrates into the recipient chromosome during suicidal plasmid transfer, followed by homologous recombination between the Tn<i>6283</i> copy in the chromosome and that in the newly transferred pSEA1. Tn<i>6283</i> is unusual among integrative elements in that it apparently does not encode transfer function and its excision barely generates unoccupied donor sites. Thus, its movement is analogous to the transposition of insertion sequences rather than to that of canonical integrative and conjugative elements. Overall, this study reveals the presence of a previously unrecognized type of MGE in a marine organism, highlighting diversity in the mode of interspecies gene transfer.</p></div

    Prophage-triggered membrane vesicle formation through peptidoglycan damage in Bacillus subtilis

    Get PDF
    Bacteria release membrane vesicles (MVs) that play important roles in various biological processes. However, the mechanisms of MV formation in Gram-positive bacteria are unclear, as these cells possess a single cytoplasmic membrane that is surrounded by a thick cell wall. Here we use live cell imaging and electron cryo-tomography to describe a mechanism for MV formation in Bacillus subtilis. We show that the expression of a prophage-encoded endolysin in a sub-population of cells generates holes in the peptidoglycan cell wall. Through these openings, cytoplasmic membrane material protrudes into the extracellular space and is released as MVs. Due to the loss of membrane integrity, the induced cells eventually die. The vesicle-producing cells induce MV formation in neighboring cells by the enzymatic action of the released endolysin. Our results support the idea that endolysins may be important for MV formation in bacteria, and this mechanism may potentially be useful for the production of MVs for applications in biomedicine and nanotechnology

    A Case of Mesangial Proliferative Nephritis Caused by Slow Cryoglobulin

    Get PDF
    The patient was a woman in her 60s. She was found to have proteinuria on a health checkup. She did not have any particular subjective symptoms, and no definitive diagnosis was made, despite serological findings indicative of immune abnormalities. A renal biopsy was performed. Light microscopy of renal tissue section revealed mesangial proliferative nephritis. Electron microscopic findings included electron-dense deposits and fibrillar/tubular structures with a diameter of 20–30 nm. These findings suggested the presence of cryoglobulin (CG), but CG was not detected in qualitative or quantitative hematologic tests. Thus, the serum samples were stored at 37°C for a long period of time and then cooled to 4°C. When the obtained precipitates were examined, CG was successfully detected. CG that precipitates only after a long period of time is referred to as slow cryoglobulin (sCG), and sCG is extremely rare. The present case is the first documented case, to our knowledge, of renal disorders caused by sCG. It should be noted that there are some cases in which it takes much time for CG to precipitate. Thus, when CG cannot be detected, it is necessary to spend much time to determine whether CG precipitates
    corecore