9 research outputs found

    CDK19-related disorder results from both loss-of-function and gain-of-function de novo missense variants

    Get PDF
    Purpose To expand the recent description of a new neurodevelopmental syndrome related to alterations in CDK19. Methods Individuals were identified through international collaboration. Functional studies included autophosphorylation assays for CDK19 Gly28Arg and Tyr32His variants and in vivo zebrafish assays of the CDK19(G28R) and CDK19(Y32H). Results We describe 11 unrelated individuals (age range: 9 months to 14 years) with de novo missense variants mapped to the kinase domain of CDK19, including two recurrent changes at residues Tyr32 and Gly28. In vitro autophosphorylation and substrate phosphorylation assays revealed that kinase activity of protein was lower for p.Gly28Arg and higher for p.Tyr32His substitutions compared with that of the wild-type protein. Injection of CDK19 messenger RNA (mRNA) with either the Tyr32His or the Gly28Arg variants using in vivo zebrafish model significantly increased fraction of embryos with morphological abnormalities. Overall, the phenotype of the now 14 individuals with CDK19-related disorder includes universal developmental delay and facial dysmorphism, hypotonia (79%), seizures (64%), ophthalmologic anomalies (64%), and autism/autistic traits (56%). Conclusion CDK19 de novo missense variants are responsible for a novel neurodevelopmental disorder. Both kinase assay and zebrafish experiments showed that the pathogenetic mechanism may be more diverse than previously thought.Peer reviewe

    Preparation of Ultra-fine CaCO3 Particles Utilizing Nonionic W/O Microemulsions

    No full text

    Quantitative elucidation of maternal-to-fetal transfer of neonicotinoid pesticide clothianidin and its metabolites in mice

    Get PDF
    Neonicotinoids (NNs), a widely used class of systemic pesticides, are regarded as exhibiting selective toxicity in insects. However, NNs are suspected of exerting adverse effects on mammals as well, including humans. To date, only adult male animal models have been subjected to general toxicity studies of NNs; fetuses have yet to be considered in this context. Here, we focused on the NN clothianidin (CLO) for the first quantitative LC-MS/MS analysis of maternal-to-fetal transfer and residual property of once-daily (single or multiple days), orally administered CLO and its metabolites in mice. The results revealed the presence of CLO and its five metabolites at approximately the same respective blood levels in both dams and fetuses. In the dams, CLO showed a peak value 1 h after administration, after which levels rapidly decreased at 3 and 6 h. In the fetuses of each group, levels of CLO were almost the same as those observed in the corresponding dams. The present results clearly demonstrated rapid passage of CLO through the placental barrier. However, metabolite-dependent differences observed in blood pharmacokinetics and residual levels. This is the first quantitative demonstration of the presence of CLO and its metabolites in fetal mouse blood

    Sex-specific behavioral effects of acute exposure to the neonicotinoid clothianidin in mice

    No full text
    Although neonicotinoids are among the major classes of pesticides that affect mammalian nervous systems, little is known about sex differences in their effects. This study aimed to examine whether the neurobehavioral effects of a neonicotinoid, clothianidin (CLO), differed between sexes. Male and female C57BL/6N mice were orally administered CLO (5 or 50 mg/kg) at or below the chronic no-observed-adverse-effect-level (NOAEL) and sub- jected to behavioral tests of emotional and learning functions. Changes in neuroactivity in several brain regions and the concentrations of CLO and its metabolites in blood and urine were measured. Acute CLO exposure caused sex-related behavioral effects; decreases in locomotor activities and elevation of anxiety-like behaviors were more apparent in males than in females. In addition, male-specific impairment of short- and long-term learning memory by CLO exposure was observed in both the novel recognition test and the Barnes maze test. Male- dominant increases in the number of c-fos positive cells were observed in the paraventricular thalamic nu- cleus in the thalamus and in the dentate gyrus in the hippocampus, which are related to the stress response and learning function, respectively. The concentrations of CLO and most metabolites in blood and urine were higher in males. These results support the notion that male mice are more vulnerable than females to the neuro- behavioral effects of CLO and provide novel insights into the risk assessment of neonicotinoids in mammalian neuronal function

    CDK19-related disorder results from both loss-of-function and gain-of-function de novo missense variants

    Get PDF
    Purpose To expand the recent description of a new neurodevelopmental syndrome related to alterations in CDK19. Methods Individuals were identified through international collaboration. Functional studies included autophosphorylation assays for CDK19 Gly28Arg and Tyr32His variants and in vivo zebrafish assays of the CDK19(G28R) and CDK19(Y32H). Results We describe 11 unrelated individuals (age range: 9 months to 14 years) with de novo missense variants mapped to the kinase domain of CDK19, including two recurrent changes at residues Tyr32 and Gly28. In vitro autophosphorylation and substrate phosphorylation assays revealed that kinase activity of protein was lower for p.Gly28Arg and higher for p.Tyr32His substitutions compared with that of the wild-type protein. Injection of CDK19 messenger RNA (mRNA) with either the Tyr32His or the Gly28Arg variants using in vivo zebrafish model significantly increased fraction of embryos with morphological abnormalities. Overall, the phenotype of the now 14 individuals with CDK19-related disorder includes universal developmental delay and facial dysmorphism, hypotonia (79%), seizures (64%), ophthalmologic anomalies (64%), and autism/autistic traits (56%). Conclusion CDK19 de novo missense variants are responsible for a novel neurodevelopmental disorder. Both kinase assay and zebrafish experiments showed that the pathogenetic mechanism may be more diverse than previously thought.Peer reviewe
    corecore