22 research outputs found
Recommended from our members
Characterization of an Acute Muscle Contraction Model Using Cultured C2C12 Myotubes
A cultured C2C12 myotube contraction system was examined for application as a model for acute contraction-induced phenotypes of skeletal muscle. C2C12 myotubes seeded into 4-well rectangular plates were placed in a contraction system equipped with a carbon electrode at each end. The myotubes were stimulated with electric pulses of 50 V at 1 Hz for 3 ms at 997-ms intervals. Approximately 80% of the myotubes were observed to contract microscopically, and the contractions lasted for at least 3 h with electrical stimulation. Calcium ion transient evoked by the electric pulses was detected fluorescently with Fluo-8. Phosphorylation of protein kinase B/Akt (Akt), 5′ AMP-activated protein kinase (AMPK), p38 mitogen-activated protein kinase (p38), and c-Jun NH2-terminal kinase (JNK)1/2, which are intracellular signaling proteins typically activated in exercised/contracted skeletal muscle, was observed in the electrically stimulated C2C12 myotubes. The contractions induced by the electric pulses increased glucose uptake and depleted glycogen in the C2C12 myotubes. C2C12 myotubes that differentiated after exogenous gene transfection by a lipofection or an electroporation method retained their normal contractile ability by electrical stimulation. These findings show that our C2C12 cell contraction system reproduces the muscle phenotypes that arise in vivo (exercise), in situ (hindlimb muscles in an anesthetized animal), and in vitro (dissected muscle tissues in incubation buffer) by acute muscle contraction, demonstrating that the system is applicable for the analysis of intracellular events evoked by acute muscle contraction
Evidence for acute contraction-induced myokine secretion by C2C12 myotubes.
Skeletal muscle is considered a secretory organ that produces bioactive proteins known as myokines, which are released in response to various stimuli. However, no experimental evidence exists regarding the mechanism by which acute muscle contraction regulates myokine secretion. Here, we present evidence that acute contractions induced myokine secretion from C2C12 myotubes. Changes in the cell culture medium unexpectedly triggered the release of large amounts of proteins from the myotubes, and these proteins obscured the contraction-induced myokine secretion. Once protein release was abolished, the secretion of interleukin-6 (IL-6), the best-known regulatory myokine, increased in response to a 1-hour contraction evoked by electrical stimulation. Using this experimental condition, intracellular calcium flux, rather than the contraction itself, triggered contraction-induced IL-6 secretion. This is the first report to show an evidence for acute contraction-induced myokine secretion by skeletal muscle cells
Stable isotope-labeled carnitine reveals its rapid transport into muscle cells and acetylation during contraction
Carnitine plays multiple roles in skeletal muscle metabolism, including fatty acid transport and buffering of excess acetyl-CoA in the mitochondria. The skeletal muscle cannot synthesize carnitine; therefore, carnitine must be taken up from the blood into the cytoplasm. Carnitine metabolism, its uptake into cells, and the subsequent reactions of carnitine are accelerated by muscle contraction. Isotope tracing enables the marking of target molecules and monitoring of tissue distribution. In this study, stable isotope-labeled carnitine tracing was combined with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging to determine carnitine distribution in mouse skeletal muscle tissues. Deuterium-labeled carnitine (d3-carnitine) was intravenously injected into the mice and diffused to the skeletal muscles for 30 and 60Â min. To examine whether muscle contraction changes the distribution of carnitine and its derivatives, unilateral in situ muscle contraction was performed; 60Â min muscle contraction showed increased d3-carnitine and its derivative d3-acetylcarnitine in the muscle, indicating that carnitine uptake in cells is promptly converted to acetylcarnitine, consequently, buffering accumulated acetyl-CoA. While the endogenous carnitine was localized in the slow type fibers rather than fast type, the contraction-induced distributions of d3-carnitine and acetylcarnitine were not necessarily associated with muscle fiber type. In conclusion, the combination of isotope tracing and MALDI-MS imaging can reveal carnitine flux during muscle contraction and show the significance of carnitine in skeletal muscles
Recommended from our members
Contraction stimulates muscle glucose uptake independent of atypical PKC
Exercise increases skeletal muscle glucose uptake, but the underlying mechanisms are only partially understood. The atypical protein kinase C (PKC) isoforms λ and ζ (PKC-λ/ζ) have been shown to be necessary for insulin-, AICAR-, and metformin-stimulated glucose uptake in skeletal muscle, but not for treadmill exercise-stimulated muscle glucose uptake. To investigate if PKC-λ/ζ activity is required for contraction-stimulated muscle glucose uptake, we used mice with tibialis anterior muscle-specific overexpression of an empty vector (WT), wild-type PKC-ζ (PKC-ζWT), or an enzymatically inactive T410A-PKC-ζ mutant (PKC-ζT410A). We also studied skeletal muscle-specific PKC-λ knockout (MλKO) mice. Basal glucose uptake was similar between WT, PKC-ζWT, and PKC-ζT410A tibialis anterior muscles. In contrast, in situ contraction-stimulated glucose uptake was increased in PKC-ζT410A tibialis anterior muscles compared to WT or PKC-ζWT tibialis anterior muscles. Furthermore, in vitro contraction-stimulated glucose uptake was greater in soleus muscles of MλKO mice than WT controls. Thus, loss of PKC-λ/ζ activity increases contraction-stimulated muscle glucose uptake. These data clearly demonstrate that PKC-λ ζ activity is not necessary for contraction-stimulated glucose uptake
LDH activity in the culture medium after 1 h of contraction in C2C12 myotubes.
<p>C2C12 myotubes were stimulated by electric pulses (50 V, 1 Hz, 3 ms) for 1 hr. There was no significant difference between non-contracted control and the contraction group (n = 6). LDH release (%) was calculated by dividing the amount of LDH in medium by the total amount of LDH in the medium and lysate (Materials and Methods).</p
The process of myotube formation in C2C12 cultured cells.
<p>The medium was switched to 2% calf serum differentiation medium when the cells reached 90–100% confluence (day 0). Days 2 and 5 indicate the days after switching to differentiation medium. C2C12 myoblasts started to fuse after induction of differentiation, and formed multinucleated myotubes by day 5. All images are shown at 200× magnification.</p
Ca<sup>2+</sup> fluorescence with and without electrical stimulation.
<p>(A) Ca<sup>2+</sup> fluorescence with and without electrical stimulation. Myotubes were treated with Fluo-8 dye loading solution 30 min before electrical stimulation. The images are shown at 200× magnification. The upper panel shows the bright-field image. The middle panel shows the myotubes with electric pulses, and the lower panel shows the myotubes without electric pulses. (B) Changes in Ca<sup>2+</sup> fluorescence intensity with electrical stimulation. The fluorescence intensity was analyzed at 5 arbitrary points. Each line shows the raw fluorescence intensity data at each point. (C) The average fluorescence intensity for 11 s is shown. The average fluorescence intensity with electric pulses is significantly higher than that without electric pulses (<i>p</i><0.01, Student’s t-test).</p