3,249 research outputs found

    The equations of motion for moist atmospheric air

    Full text link
    How phase transitions affect the motion of moist atmospheric air remains controversial. In the early 2000s two distinct differential equations of motion were proposed. Besides their contrasting formulations for the acceleration of condensate, the equations differ concerning the presence/absence of a term equal to the rate of phase transitions multiplied by the difference in velocity between condensate and air. This term was interpreted in the literature as the "reactive motion" associated with condensation. The reasoning behind this "reactive motion" was that when water vapor condenses and droplets begin to fall the remaining gas must move upwards to conserve momentum. Here we show that the two contrasting formulations imply distinct assumptions about how gaseous air and condensate particles interact. We show that these assumptions cannot be simultaneously applicable to condensation and evaporation. "Reactive motion" leading to an upward acceleration of air during condensation does not exist. The "reactive motion" term can be justified for evaporation only; it describes the downward acceleration of air. We emphasize the difference between the equations of motion (i.e., equations constraining velocity) and those constraining momentum (i.e., equations of motion and continuity combined). We show that, owing to the imprecise nature of the continuity equations, consideration of total momentum can be misleading and that this led to the "reactive motion" controversy. Finally, we provide a revised and generally applicable equation for the motion of moist air.Comment: 11 pages, two figure

    Effects of Random Biquadratic Couplings in a Spin-1 Spin-Glass Model

    Full text link
    A spin-1 model, appropriated to study the competition between bilinear (J_{ij}S_{i}S_{j}) and biquadratic (K_{ij}S_{i}^{2}S_{j}^{2}) random interactions, both of them with zero mean, is investigated. The interactions are infinite-ranged and the replica method is employed. Within the replica-symmetric assumption, the system presents two phases, namely, paramagnetic and spin-glass, separated by a continuous transition line. The stability analysis of the replica-symmetric solution yields, besides the usual instability associated with the spin-glass ordering, a new phase due to the random biquadratic couplings between the spins.Comment: 16 pages plus 2 ps figure

    The Effect of Retro-Cueing on an ERP Marker of VSTM Maintenance

    Get PDF
    Previous research has found that Contralateral Delay Activity (CDA) is correlated with the number of items maintained in Visual Short Term Memory from one visual field (VF) (Vogel & Machizawa, 2004). CDA is usually elicited by a to-be-remembered array after a prospective cue (pro-cue) signalling the relevant side of the visual display, and is interpreted as a putative electrophysiological signature of WM maintenance. Attention can also be directed to the contents of VSTM, after the presentation of a visual array, using a retroactive cue (retro-cue) (Nobre, Griffin, & Rao, 2008). Because retro-cueing directs attention within a memory trace, potentially reducing the load of items to be maintained, we hypothesised that this would significantly attenuate the CDA. Participants were initially presented with a spatial pro-cue which reduced the number of to-be-remembered items to one side. After a delay, a memory array of either four (low load) or eight (high load) items was displayed. A retro-cue then cued participants to one location within the relevant VF, further reducing the load of to-be-remembered items; or provided no information, requiring participants to hold all items in the relevant VF. At the end of the trial, participants performed a same/different judgement on a test stimulus. Retro-cues significantly improved VSTM performance. Unexpectedly, the CDA was found to be abolished by the presentation of both spatially predictive and neutral cues, independently of the VSTM load participants had to maintain

    Spin-glass phase transition and behavior of nonlinear susceptibility in the Sherrington-Kirkpatrick model with random fields

    Get PDF
    The behavior of the nonlinear susceptibility χ3\chi_3 and its relation to the spin-glass transition temperature TfT_f, in the presence of random fields, are investigated. To accomplish this task, the Sherrington-Kirkpatrick model is studied through the replica formalism, within a one-step replica-symmetry-breaking procedure. In addition, the dependence of the Almeida-Thouless eigenvalue λAT\lambda_{\rm AT} (replicon) on the random fields is analyzed. Particularly, in absence of random fields, the temperature TfT_f can be traced by a divergence in the spin-glass susceptibility χSG\chi_{\rm SG}, which presents a term inversely proportional to the replicon λAT\lambda_{\rm AT}. As a result of a relation between χSG\chi_{\rm SG} and χ3\chi_3, the latter also presents a divergence at TfT_f, which comes as a direct consequence of λAT=0\lambda_{\rm AT}=0 at TfT_f. However, our results show that, in the presence of random fields, χ3\chi_3 presents a rounded maximum at a temperature T∗T^{*}, which does not coincide with the spin-glass transition temperature TfT_f (i.e., T∗>TfT^* > T_f for a given applied random field). Thus, the maximum value of χ3\chi_3 at T∗T^* reflects the effects of the random fields in the paramagnetic phase, instead of the non-trivial ergodicity breaking associated with the spin-glass phase transition. It is also shown that χ3\chi_3 still maintains a dependence on the replicon λAT\lambda_{\rm AT}, although in a more complicated way, as compared with the case without random fields. These results are discussed in view of recent observations in the LiHox_xY1−x_{1-x}F4_4 compound.Comment: accepted for publication in PR
    • …
    corecore