50 research outputs found

    Probable association of T Tauri stars with the L1014 dense core

    Get PDF
    Using the Wide Field Grism Spectrograph 2 (WFGS2), we have carried out slit-less spectroscopy, g'r'i' photometry, and slit spectroscopy on the L1014 dense core. We detected three Halpha emission line stars. We interpret one as weak-line T Tauri star (WTTS) and the others as classical T Tauri stars (CTTS). Since their g'-i' colors and/or classified spectral types are consistent with those of T Tauri stars and two of them show less extinction than the cloud, these three stars are likely to be T Tauri stars associated with L1014. Adopting an age range for T Tauri stars, 1-10 Myr, the color-magnitude diagram suggests a distance of ~400-900 pc, rather than the previously assumed distance, 200 pc. This could strongly affect on the mass estimate of L1014-IRS, which is thought to be either a very young protostar or proto-brown dwarf.Comment: 5 pages, 5 figures, to be published in Vol.58, No.5, October 25, 200

    Dusty ERO Search behind Two Massive Clusters

    Full text link
    We performed deep K'-band imaging observations of 2 massive clusters, MS 0451.6-0305 at z = 0.55 and MS 0440.5+0204 at z = 0.19, for searching counterparts of the faint sub-mm sources behind these clusters, which would provide one of the deepest extremely red object(ERO) samples. Comparing our near-infrared images with optical images taken by the Hubble Space Telescope and by the Subaru Telescope, we identified 13 EROs in these fields. The sky distributions of EROs are consistent with the previous results, that there is a sign of strong clustering among detected EROs. Also, the surface density with corrected lensing amplification factors in both clusters are in good agreement with that derived from previous surveys. We found 7 EROs and 3 additional very red objects in a small area (\sim 0.6 arcmin^2) of the MS 0451.6-0305 field around an extended SCUBA source. Many of their optical and near-infrared colors are consistent with dusty star-forming galaxies at high redshifts(z \sim 1.0-4.0), and they may be constituting a cluster of dusty starburst galaxies and/or lensed star-forming galaxies at high redshift. Their red J-K' colors and faint optical magnitudes suggest they are relatively old massive stellar systems with ages(>300 Mega years) suffering from dust obscuration. We also found a surface-density enhancement of EROs around the SCUBA source in the MS 0440.5+0204 field.Comment: 19 pages, 11 figures, Latex(using pasj00.cls). To be published in PASJ vol 55, No. 4(Aug 2003

    Superwind-Driven Intense H_2 Emission in NGC 6240

    Get PDF
    We have performed a long-slit K band spectroscopic observation of the luminous infrared galaxy NGC 6240. The peak position of the H_2 v=1-0 S(1) emission in the slit is located ~0.3" - 0.4" north of the southern nucleus. It is almost the midpoint between the southern nucleus and the peak position of the ^12CO J=1-0 emission. Based on the line-ratio analyses, we suggest the excitation mechanism of H_2 is pure thermal at most positions. In the southern region we find the following three velocity components in the H_2 emission: the blueshifted shell component (~-250 km s^-1 with respect to V_sys) which is recognized as a distinct C-shape distortion in the velocity field around the southern nucleus, the high-velocity blueshifted ``wing'' component (~-1000 km s^-1 with respect to V_sys), and the component indicating possible line splitting of ~500 km s^-1. The latter two components are extended to the south from the southern nucleus. We show that the kinematic properties of these three components can be reproduced by expanding motion of a shell-like structure around the southern nucleus. The offset peak position of the H_2 emission can be understood if we assume that the shell expanding to the north interacts with the extragalactic molecular gas. At the interface between the shell and the molecular gas concentration the cloud-crushing mechanism proposed by Cowie et al. (1981) may work efficiently, and the intense H_2 emission is thus expected there. All these findings lead us to propose a model that the most H_2 emission is attributed to the shock excitation driven by the superwind activity of the southern nucleus.Comment: 33 pages, 9 figures, accepted for publication in PAS

    Low- and Medium-Dispersion Spectropolarimetry of Nova V475 Sct (Nova Scuti 2003): Discovery of an Asymmetric High-Velocity Wind in a Moderately Fast Nova

    Full text link
    We present low-resolution (R90R\sim 90) and medium-resolution (R2500R\sim 2500) spectropolarimetry of Nova V475 Sct with the HBS instrument, mounted on the 0.91-m telescope at the Okayama Astrophysical Observatory, and with FOCAS, mounted on the 8.2-m Subaru telescope. We estimated the interstellar polarization toward the nova from the steady continuum polarization components and Hα\alpha line emission components. After subtracting the interstellar polarization component from the observations, we found that the Hα\alpha emission seen on 2003 October 7 was clearly polarized. In the polarized flux spectrum, the Hα\alpha emission had a distinct red wing extending to +4900\sim +4900 km s1^{-1} and a shoulder around +3500+3500 km s1^{-1}, showing a constant position angle of linear polarization \theta_{\rm *}\simeq 155\arcdeg\pm 15\arcdeg. This suggests that the nova had an asymmetric outflow with a velocity of vwind3500v_{\rm wind}\simeq 3500 km s1^{-1} or more, which is six times higher than the expansion velocity of the ionized shell at the same epoch. Such a high-velocity component has not previously been reported for a nova in the `moderately fast' speed class. Our observations suggest the occurrence of violent mass-loss activity in the nova binary system even during the common-envelope phase. The position angle of the polarization in the Hα\alpha wing is in good agreement with that of the continuum polarization found on 2003 September 26 (p0.4p_{\rm *}\simeq 0.4--0.6 %), which disappeared within the following 2 d. The uniformity of the PA between the continuum polarization and the wing polarization on October 7 suggests that the axis of the circumstellar asymmetry remained nearly constant during the period of our observations.Comment: 27 pages, 7 figures, accepted for publication in A
    corecore