45 research outputs found

    AN ASSESSMENT OF KNOWLEDGE AND ATTITUDES OF GENETIC COUNSELING SERVICES IN U.S. HTCs

    Get PDF
    Hemophilia is a hereditary bleeding disorder which requires lifelong specialized care. A network of Hemophilia Treatment Centers (HTCs) exists to meet the medical needs of patients affected by hemophilia. Genetic counseling services are an integral part of the HTC model of care; however, many HTCs do not have genetic counselors on staff. As a result, the duty to provide these services must fall to other healthcare providers within the HTC. To assess the knowledge and attitudes of these providers we developed a 49 question survey that was distributed electronically to hematologists and nurses at U.S. HTCs. The survey consisted of a three sections: demographic information, knowledge of hemophilia genetics, and attitudes towards genetic services. A total of 111 complete responses were received and analyzed. The average knowledge score among all participants was 74.8% with a total of 81 participants receiving a passing score of 70% or above. Thirty participants scored below 70% in the knowledge section. In general, attitude scores were high indicating that the majority of hematologists and nurses in HTCs feel confident in their ability to provide genetic counseling services. Over 90% of participants reported that they have some form of access to genetic counseling services at their center. Hematologists and nurses practicing in U.S. HTCs demonstrate sufficient knowledge of the genetics of hemophilia, and they generally feel confident in their ability to provide genetic counseling services to their patients. While their knowledge is sufficient, the average knowledge score was lower than 75%. Certain questions covering new genetic technologies and testing practices were more commonly missed than questions asking about more basic aspects of hemophilia genetics, such as inheritance and carrier testing. Finally, many clinics report having access to a counselor, but it is oftentimes a hematologist or nurse who is providing genetic counseling services to patients. Given the inconsistency in knowledge among providers coupled with the high confidence in one’s ability to counsel patients, it leaves room to question whether information about the genetics of hemophilia is being communicated to patients in the most appropriate and accurate manner

    Indications for genetic referral: a guide for healthcare providers

    Get PDF
    Geneticists and genetic counselors are often asked what may be appropriate reasons for referral to a genetics service. The Professional Practice and Guidelines Committee of the American College of Medical Genetics has generated lists of the more common reasons for referral and provide them for use by genetics professionals and other healthcare providers for guidance. The lists are divided into pediatric, prenatal, and adult indications

    2013 Review and Update of the Genetic Counseling Practice Based Competencies by a Task Force of the Accreditation Council for Genetic Counseling

    Full text link
    The first practice based competencies (PBCs) for the field of genetic counseling were adopted by the American Board of Genetic Counseling (ABGC), 1996. Since that time, there has been significant growth in established and new work settings (clinical and non‐clinical) and changes in service delivery models and the roles of genetic counselors. These changes prompted the ABGC to appoint a PBC Task Force in 2011 to review the PBCs with respect to their current relevance and to revise and update them as necessary. There are four domains in the revised PBCs: (I) Genetics Expertise and Analysis (II) Interpersonal, Psychosocial and Counseling Skills (III) Education and (IV) Professional Development and Practice. There are 22 competencies, each clarified with learning objectives or samples of activities and skills; a glossary is included. New competencies were added that address genomics, genetic testing and genetic counselors’ roles in risk assessment, education, supervision, conducting research and presenting research options to patients. With PBCs serving as the pre‐defined abilities or outcomes of training, graduating genetic counselors will be well prepared to enter the field with a minimum level of skills and abilities. A description of the Task Force’s work, key changes and the 2013 PBCs are presented herein.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147172/1/jgc40868.pd

    Identification of common genetic risk variants for autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD

    Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies

    Get PDF
    Background Genome-wide association studies (GWAS) in Parkinson's disease have increased the scope of biological knowledge about the disease over the past decade. We aimed to use the largest aggregate of GWAS data to identify novel risk loci and gain further insight into the causes of Parkinson's disease. Methods We did a meta-analysis of 17 datasets from Parkinson's disease GWAS available from European ancestry samples to nominate novel loci for disease risk. These datasets incorporated all available data. We then used these data to estimate heritable risk and develop predictive models of this heritability. We also used large gene expression and methylation resources to examine possible functional consequences as well as tissue, cell type, and biological pathway enrichments for the identified risk factors. Additionally, we examined shared genetic risk between Parkinson's disease and other phenotypes of interest via genetic correlations followed by Mendelian randomisation. Findings Between Oct 1, 2017, and Aug 9, 2018, we analysed 7·8 million single nucleotide polymorphisms in 37 688 cases, 18 618 UK Biobank proxy-cases (ie, individuals who do not have Parkinson's disease but have a first degree relative that does), and 1·4 million controls. We identified 90 independent genome-wide significant risk signals across 78 genomic regions, including 38 novel independent risk signals in 37 loci. These 90 variants explained 16–36% of the heritable risk of Parkinson's disease depending on prevalence. Integrating methylation and expression data within a Mendelian randomisation framework identified putatively associated genes at 70 risk signals underlying GWAS loci for follow-up functional studies. Tissue-specific expression enrichment analyses suggested Parkinson's disease loci were heavily brain-enriched, with specific neuronal cell types being implicated from single cell data. We found significant genetic correlations with brain volumes (false discovery rate-adjusted p=0·0035 for intracranial volume, p=0·024 for putamen volume), smoking status (p=0·024), and educational attainment (p=0·038). Mendelian randomisation between cognitive performance and Parkinson's disease risk showed a robust association (p=8·00 × 10−7). Interpretation These data provide the most comprehensive survey of genetic risk within Parkinson's disease to date, to the best of our knowledge, by revealing many additional Parkinson's disease risk loci, providing a biological context for these risk factors, and showing that a considerable genetic component of this disease remains unidentified. These associations derived from European ancestry datasets will need to be followed-up with more diverse data. Funding The National Institute on Aging at the National Institutes of Health (USA), The Michael J Fox Foundation, and The Parkinson's Foundation (see appendix for full list of funding sources)

    Genome-wide association and epidemiological analyses reveal common genetic origins between uterine leiomyomata and endometriosis

    Get PDF
    Uterine leiomyomata (UL) are the most common neoplasms of the female reproductive tract and primary cause for hysterectomy, leading to considerable morbidity and high economic burden. Here we conduct a GWAS meta-analysis in 35,474 cases and 267,505 female controls of European ancestry, identifying eight novel genome-wide significant (P < 5 × 10−8) loci, in addition to confirming 21 previously reported loci, including multiple independent signals at 10 loci. Phenotypic stratification of UL by heavy menstrual bleeding in 3409 cases and 199,171 female controls reveals genome-wide significant associations at three of the 29 UL loci: 5p15.33 (TERT), 5q35.2 (FGFR4) and 11q22.3 (ATM). Four loci identified in the meta-analysis are also associated with endometriosis risk; an epidemiological meta-analysis across 402,868 women suggests at least a doubling of risk for UL diagnosis among those with a history of endometriosis. These findings increase our understanding of genetic contribution and biology underlying UL development, and suggest overlapping genetic origins with endometriosis

    Genomic analysis of male puberty timing highlights shared genetic basis with hair colour and lifespan

    Get PDF
    Abstract: The timing of puberty is highly variable and is associated with long-term health outcomes. To date, understanding of the genetic control of puberty timing is based largely on studies in women. Here, we report a multi-trait genome-wide association study for male puberty timing with an effective sample size of 205,354 men. We find moderately strong genomic correlation in puberty timing between sexes (rg = 0.68) and identify 76 independent signals for male puberty timing. Implicated mechanisms include an unexpected link between puberty timing and natural hair colour, possibly reflecting common effects of pituitary hormones on puberty and pigmentation. Earlier male puberty timing is genetically correlated with several adverse health outcomes and Mendelian randomization analyses show a genetic association between male puberty timing and shorter lifespan. These findings highlight the relationships between puberty timing and health outcomes, and demonstrate the value of genetic studies of puberty timing in both sexes

    Multi-ancestry genome-wide association meta-analysis of Parkinson?s disease

    Get PDF
    Although over 90 independent risk variants have been identified for Parkinson’s disease using genome-wide association studies, most studies have been performed in just one population at a time. Here we performed a large-scale multi-ancestry meta-analysis of Parkinson’s disease with 49,049 cases, 18,785 proxy cases and 2,458,063 controls including individuals of European, East Asian, Latin American and African ancestry. In a meta-analysis, we identified 78 independent genome-wide significant loci, including 12 potentially novel loci (MTF2, PIK3CA, ADD1, SYBU, IRS2, USP8, PIGL, FASN, MYLK2, USP25, EP300 and PPP6R2) and fine-mapped 6 putative causal variants at 6 known PD loci. By combining our results with publicly available eQTL data, we identified 25 putative risk genes in these novel loci whose expression is associated with PD risk. This work lays the groundwork for future efforts aimed at identifying PD loci in non-European populations
    corecore