221 research outputs found

    Parliamentary politics in Russia

    Get PDF
    In the early 1990s, parliamentary politics was at the heart of Russian politics. It was the deadlocked battle for supremacy between the Russian president, Boris Yeltsin, and the chairman of the Supreme Soviet, Ruslan Khasbulatov, that ended with the shelling of the White House – the-then seat of Russia’s permanent parliament. This violent confrontation ultimately claimed the lives of many in Moscow, with upper estimates reaching 1,000 people (see the chapter on contentious politics). Now, the Federal Assembly is dismissed as a mere ‘rubber stamp’ – a body that unthinkingly nods through decisions made by the Presidential Administration and the government. What changed? How did we get from violence to passivity, from parliament being at the centre of political life, to it (apparently) playing a largely peripheral, symbolic role? This chapter will tell the story of federal-level parliamentary politics in post-Soviet Russia. Although it might be tempting to narrate a simple account, moving from violence and confrontation to conformity and control, the chapter will also underscore events that complicate this narrative. The chapter will also touch on a more fundamental question: Does it even make sense to approach studying the Russian Federal Assembly as a ‘real’ parliament – as a branch of government that plays a meaningful, independent role in the political life of the country? Just because we call a body a legislature, does it follow that we should assume it performs the ‘roles’ and ‘functions’ traditionally associated with such institutions in democracies? In engaging with this issue, the chapter will discuss the recent literature on political institutions in non-democratic regimes, which is part of wider scholarship on neo-institutionalism. Before getting there, however, the chapter will begin with some necessary historical context: the place of parliaments in the Soviet Union

    No illusions: the voices of Russia's future leaders

    Get PDF

    Authoritarian amendments: Legislative institutions as intra-executive constraints in post-Soviet Russia

    Get PDF
    Why are executive bills sometimes amended significantly in authoritarian legislatures? Bill change clashes with the conventional picture of parliaments in non-democracies as 'rubber stamp' bodies. Recent work challenging the 'rubber stamp' model suggests that cases of amendment are the result of legislator influence. This article proposes an alternative argument: amendment can result from intra-executive policy-making processes, unresolved in the pre-legislative, cabinet-level stage. Factionalised executives can use legislative institutions to help overcome information asymmetries, as well as the commitment and monitoring problems involved in collective decision-making. This article evaluates this alternative account using a combination of statistical and case-study analyses, drawing on both cross-national and fine-grained data from contemporary Russia. The findings contribute to our knowledge of authoritarian legislatures, policy-making processes in non-democracies, and Russian politics

    Regional differences in APD restitution can initiate wavebreak and re-entry in cardiac tissue: A computational study

    Get PDF
    Background Regional differences in action potential duration (APD) restitution in the heart favour arrhythmias, but the mechanism is not well understood. Methods We simulated a 150 × 150 mm 2D sheet of cardiac ventricular tissue using a simplified computational model. We investigated wavebreak and re-entry initiated by an S1S2S3 stimulus protocol in tissue sheets with two regions, each with different APD restitution. The two regions had a different APD at short diastolic interval (DI), but similar APD at long DI. Simulations were performed twice; once with both regions having steep (slope > 1), and once with both regions having flat (slope < 1) APD restitution. Results Wavebreak and re-entry were readily initiated using the S1S2S3 protocol in tissue sheets with two regions having different APD restitution properties. Initiation occurred irrespective of whether the APD restitution slopes were steep or flat. With steep APD restitution, the range of S2S3 intervals resulting in wavebreak increased from 1 ms with S1S2 of 250 ms, to 75 ms (S1S2 180 ms). With flat APD restitution, the range of S2S3 intervals resulting in wavebreak increased from 1 ms (S1S2 250 ms), to 21 ms (S1S2 340 ms) and then 11 ms (S1S2 400 ms). Conclusion Regional differences in APD restitution are an arrhythmogenic substrate that can be concealed at normal heart rates. A premature stimulus produces regional differences in repolarisation, and a further premature stimulus can then result in wavebreak and initiate re-entry. This mechanism for initiating re-entry is independent of the steepness of the APD restitution curve

    Interpol and the Emergence of Global Policing

    Get PDF
    This chapter examines global policing as it takes shape through the work of Interpol, the International Criminal Police Organization. Global policing emerges in the legal, political and technological amalgam through which transnational police cooperation is carried out, and includes the police practices inflected and made possible by this phenomenon. Interpol’s role is predominantly in the circulation of information, through which it enters into relationships and provides services that affect aspects of governance, from the local to national, regional and global. The chapter describes this assemblage as a noteworthy experiment in developing what McKeon called a frame for common action. Drawing on Interpol publications, news stories, interviews with staff, and fieldwork at the General Secretariat in Lyon, France, the history, institutional structure, and daily practices are described. Three cases are analyzed, concerning Red Notices, national sovereignty, and terrorism, in order to explore some of the problems arising in Interpol’s political and technical operating arrangements. In conclusion, international and global policing are compared schematically, together with Interpol’s attempts to give institutional and procedural direction to the still-evolving form of global policing

    The emerging structure of the Extended Evolutionary Synthesis: where does Evo-Devo fit in?

    Get PDF
    The Extended Evolutionary Synthesis (EES) debate is gaining ground in contemporary evolutionary biology. In parallel, a number of philosophical standpoints have emerged in an attempt to clarify what exactly is represented by the EES. For Massimo Pigliucci, we are in the wake of the newest instantiation of a persisting Kuhnian paradigm; in contrast, Telmo Pievani has contended that the transition to an EES could be best represented as a progressive reformation of a prior Lakatosian scientific research program, with the extension of its Neo-Darwinian core and the addition of a brand-new protective belt of assumptions and auxiliary hypotheses. Here, we argue that those philosophical vantage points are not the only ways to interpret what current proposals to ‘extend’ the Modern Synthesis-derived ‘standard evolutionary theory’ (SET) entail in terms of theoretical change in evolutionary biology. We specifically propose the image of the emergent EES as a vast network of models and interweaved representations that, instantiated in diverse practices, are connected and related in multiple ways. Under that assumption, the EES could be articulated around a paraconsistent network of evolutionary theories (including some elements of the SET), as well as models, practices and representation systems of contemporary evolutionary biology, with edges and nodes that change their position and centrality as a consequence of the co-construction and stabilization of facts and historical discussions revolving around the epistemic goals of this area of the life sciences. We then critically examine the purported structure of the EES—published by Laland and collaborators in 2015—in light of our own network-based proposal. Finally, we consider which epistemic units of Evo-Devo are present or still missing from the EES, in preparation for further analyses of the topic of explanatory integration in this conceptual framework

    Oxygen-sensing neurons reciprocally regulate peripheral lipid metabolism via neuropeptide signaling in <i>Caenorhabditis elegans</i>

    Get PDF
    <div><p>The mechanisms by which the sensory environment influences metabolic homeostasis remains poorly understood. In this report, we show that oxygen, a potent environmental signal, is an important regulator of whole body lipid metabolism. <i>C</i>. <i>elegans</i> oxygen-sensing neurons reciprocally regulate peripheral lipid metabolism under normoxia in the following way: under high oxygen and food absence, URX sensory neurons are activated, and stimulate fat loss in the intestine, the major metabolic organ for <i>C</i>. <i>elegans</i>. Under lower oxygen conditions or when food is present, the BAG sensory neurons respond by repressing the resting properties of the URX neurons. A genetic screen to identify modulators of this effect led to the identification of a BAG-neuron-specific neuropeptide called FLP-17, whose cognate receptor EGL-6 functions in URX neurons. Thus, BAG sensory neurons counterbalance the metabolic effect of tonically active URX neurons via neuropeptide communication. The combined regulatory actions of these neurons serve to precisely tune the rate and extent of fat loss to the availability of food and oxygen, and provides an interesting example of the myriad mechanisms underlying homeostatic control.</p></div

    The Impact of the C-Terminal Domain on the Interaction of Human DNA Topoisomerase II α and β with DNA

    Get PDF
    &lt;b&gt;Background&lt;/b&gt; Type II DNA topoisomerases are essential, ubiquitous enzymes that act to relieve topological problems arising in DNA from normal cellular activity. Their mechanism of action involves the ATP-dependent transport of one DNA duplex through a transient break in a second DNA duplex; metal ions are essential for strand passage. Humans have two isoforms, topoisomerase IIα and topoisomerase IIβ, that have distinct roles in the cell. The C-terminal domain has been linked to isoform specific differences in activity and DNA interaction. &lt;b&gt;Methodology/Principal Findings&lt;/b&gt; We have investigated the role of the C-terminal domain in the binding of human topoisomerase IIα and topoisomerase IIβ to DNA in fluorescence anisotropy assays using full length and C-terminally truncated enzymes. We find that the C-terminal domain of topoisomerase IIβ but not topoisomerase IIα affects the binding of the enzyme to the DNA. The presence of metal ions has no effect on DNA binding. Additionally, we have examined strand passage of the full length and truncated enzymes in the presence of a number of supporting metal ions and find that there is no difference in relative decatenation between isoforms. We find that calcium and manganese, in addition to magnesium, can support strand passage by the human topoisomerase II enzymes. &lt;b&gt;Conclusions/Significance&lt;/b&gt; The C-terminal domain of topoisomerase IIβ, but not that of topoisomerase IIα, alters the enzyme's KD for DNA binding. This is consistent with previous data and may be related to the differential modes of action of the two isoforms in vivo. We also show strand passage with different supporting metal ions for human topoisomerase IIα or topoisomerase IIβ, either full length or C-terminally truncated. They all show the same preferences, whereby Mg &#62; Ca &#62; Mn

    Prediction of hot spot residues at protein-protein interfaces by combining machine learning and energy-based methods

    Get PDF
    Background: Alanine scanning mutagenesis is a powerful experimental methodology for investigating the structural and energetic characteristics of protein complexes. Individual aminoacids are systematically mutated to alanine and changes in free energy of binding (Delta Delta G) measured. Several experiments have shown that protein-protein interactions are critically dependent on just a few residues ("hot spots") at the interface. Hot spots make a dominant contribution to the free energy of binding and if mutated they can disrupt the interaction. As mutagenesis studies require significant experimental efforts, there is a need for accurate and reliable computational methods. Such methods would also add to our understanding of the determinants of affinity and specificity in protein-protein recognition.Results: We present a novel computational strategy to identify hot spot residues, given the structure of a complex. We consider the basic energetic terms that contribute to hot spot interactions, i.e. van der Waals potentials, solvation energy, hydrogen bonds and Coulomb electrostatics. We treat them as input features and use machine learning algorithms such as Support Vector Machines and Gaussian Processes to optimally combine and integrate them, based on a set of training examples of alanine mutations. We show that our approach is effective in predicting hot spots and it compares favourably to other available methods. In particular we find the best performances using Transductive Support Vector Machines, a semi-supervised learning scheme. When hot spots are defined as those residues for which Delta Delta G >= 2 kcal/mol, our method achieves a precision and a recall respectively of 56% and 65%.Conclusion: We have developed an hybrid scheme in which energy terms are used as input features of machine learning models. This strategy combines the strengths of machine learning and energy-based methods. Although so far these two types of approaches have mainly been applied separately to biomolecular problems, the results of our investigation indicate that there are substantial benefits to be gained by their integration
    corecore