17 research outputs found

    Resolution criteria to avoid artificial clumping in Lagrangian hydrodynamic simulations with a multi-phase interstellar medium

    Full text link
    Large-scale cosmological galaxy formation simulations typically prevent gas in the interstellar medium (ISM) from cooling below ≈104\approx 10^4 K. This has been motivated by the inability to resolve the Jeans mass in molecular gas (>>105 M⊙10^5\,\mathrm{M}_{\odot}) which would result in undesired artificial clumping. We show that the classical Jeans criteria derived for Newtonian gravity are not applicable in the simulated ISM if the spacing of resolution elements representing the dense ISM is below the gravitational force softening length and gravity is therefore softened and not Newtonian. We re-derive the Jeans criteria for softened gravity in Lagrangian codes and use them to analyse gravitational instabilities at and below the hydrodynamical resolution limit for simulations with adaptive and constant gravitational softening lengths. In addition, we define criteria for which a numerical runaway collapse of dense gas clumps can occur caused by over-smoothing of the hydrodynamical properties relative to the gravitational force resolution. This effect is illustrated using simulations of isolated disk galaxies with the smoothed particle hydrodynamics code Swift. We also demonstrate how to avoid the formation of artificial clumps in gas and stars by adjusting the gravitational and hydrodynamical force resolutions.Comment: 24 pages, 15 figures, accepted for publication in MNRAS, smaller updates to match published versio

    The interplay between AGN feedback and precipitation of the intracluster medium in simulations of galaxy groups and clusters

    Get PDF
    Using high-resolution hydrodynamical simulations of galaxy clusters, we study the interaction between the brightest cluster galaxy, its supermassive black hole (BH) and the intracluster medium (ICM). We create initial conditions for which the ICM is in hydrostatic equilibrium within the gravitational potential from the galaxy and an NFW dark matter halo. Two free parameters associated with the thermodynamic profiles determine the cluster gas fraction and the central temperature, where the latter can be used to create cool-core or non-cool-core systems. Our simulations include radiative cooling, star formation, BH accretion, and stellar and active galactic nucleus (AGN) feedback. Even though the energy of AGN feedback is injected thermally and isotropically, it leads to anisotropic outflows and buoyantly rising bubbles. We find that the BH accretion rate (BHAR) is highly variable and only correlates strongly with the star formation rate (SFR) and the ICM when it is averaged over more than 1 Myr1~\rm Myr. We generally find good agreement with the theoretical precipitation framework. In 1013 M⊙10^{13}~\rm M_\odot haloes, AGN feedback quenches the central galaxy and converts cool-core systems into non-cool-core systems. In contrast, higher-mass, cool-core clusters evolve cyclically. Episodes of high BHAR raise the entropy of the ICM out to the radius where the ratio of the cooling time and the local dynamical time tcool/tdyn>10t_{\rm cool}/t_{\rm dyn} > 10, thus suppressing condensation and, after a delay, the BHAR. The corresponding reduction in AGN feedback allows the ICM to cool and become unstable to precipitation, thus initiating a new episode of high SFR and BHAR.Comment: 22 pages, 15 figures (including appendix); submitted to MNRAS; Supplementary material is available on Youtube at https://youtu.be/HQhc_mytj0A and online on a single website page at https://home.strw.leidenuniv.nl/~nobels/supplementary_idealised_cluster_paper.ph

    Winds versus jets: a comparison between black hole feedback modes in simulations of idealized galaxy groups and clusters

    Get PDF
    Using the SWIFT simulation code, we compare the effects of different forms of active galactic nuclei (AGNs) feedback in idealized galaxy groups and clusters. We first present a physically motivated model of black hole (BH) spin evolution and a numerical implementation of thermal isotropic feedback (representing the effects of energy-driven winds) and collimated kinetic jets that they launch at different accretion rates. We find that kinetic jet feedback is more efficient at quenching star formation in the brightest cluster galaxies (BCGs) than thermal isotropic feedback, while simultaneously yielding cooler cores in the intracluster medium (ICM). A hybrid model with both types of AGN feedback yields moderate star formation rates, while having the coolest cores. We then consider a simplified implementation of AGN feedback by fixing the feedback efficiencies and the jet direction, finding that the same general conclusions hold. We vary the feedback energetics (the kick velocity and the heating temperature), the fixed efficiencies and the type of energy (kinetic versus thermal) in both the isotropic and the jet case. The isotropic case is largely insensitive to these variations. On the other hand, jet feedback must be kinetic in order to be efficient at quenching. We also find that it is much more sensitive to the choice of energy per feedback event (the jet velocity), as well as the efficiency. The former indicates that jet velocities need to be carefully chosen in cosmological simulations, while the latter motivates the use of BH spin evolution models

    Tests of subgrid models for star formation using simulations of isolated disk galaxies

    Full text link
    We use smoothed-particle hydrodynamics simulations of isolated Milky Way-mass disk galaxies that include cold, interstellar gas to test subgrid prescriptions for star formation (SF). Our fiducial model combines a Schmidt law with a gravitational instability criterion, but we also test density thresholds and temperature ceilings. While SF histories are insensitive to the prescription for SF, the Kennicutt-Schmidt (KS) relations between SF rate and gas surface density can discriminate between models. We show that our fiducial model, with an SF efficiency per free-fall time of 1 per cent, agrees with spatially-resolved and azimuthally-averaged observed KS relations for neutral, atomic and molecular gas. Density thresholds do not perform as well. While temperature ceilings selecting cold, molecular gas can match the data for galaxies with solar metallicity, they are unsuitable for very low-metallicity gas and hence for cosmological simulations. We argue that SF criteria should be applied at the resolution limit rather than at a fixed physical scale, which means that we should aim for numerical convergence of observables rather than of the properties of gas labelled as star-forming. Our fiducial model yields good convergence when the mass resolution is varied by nearly 4 orders of magnitude, with the exception of the spatially-resolved molecular KS relation at low surface densities. For the gravitational instability criterion, we quantify the impact on the KS relations of gravitational softening, the SF efficiency, and the strength of supernova feedback, as well as of observable parameters such as the inclusion of ionized gas, the averaging scale, and the metallicity.Comment: Submitted to MNRAS, 23 pages, 20 figure

    A thermal-kinetic subgrid model for supernova feedback in simulations of galaxy formation

    Full text link
    We present a subgrid model for supernova feedback designed for simulations of galaxy formation. The model uses thermal and kinetic channels of energy injection, which are built upon the stochastic kinetic and thermal models for stellar feedback used in the OWLS and EAGLE simulations, respectively. In the thermal channel, the energy is distributed statistically isotropically and injected stochastically in large amounts per event, which minimizes spurious radiative energy losses. In the kinetic channel, we inject the energy in small portions by kicking gas particles in pairs in opposite directions. The implementation of kinetic feedback is designed to conserve energy, linear momentum and angular momentum, and is statistically isotropic. To test and validate the model, we run simulations of isolated Milky Way-mass and dwarf galaxies, in which the gas is allowed to cool down to 10 K. Using the thermal and kinetic channels together, we obtain smooth star formation histories and powerful galactic winds with realistic mass loading factors. Furthermore, the model produces spatially resolved star formation rates and velocity dispersions that are in agreement with observations. We vary the numerical resolution by several orders of magnitude and find excellent convergence of the global star formation rates and the mass loading of galactic winds. We show that large thermal-energy injections generate a hot phase of the interstellar medium (ISM) and modulate the star formation by ejecting gas from the disc, while the low-energy kicks increase the turbulent velocity dispersion in the neutral ISM, which in turn helps suppress star formation.Comment: 22 pages, 17 figures (including appendix); submitted to MNRA

    Tests of subgrid models for star formation using simulations of isolated disk galaxies

    Get PDF
    We use smoothed-particle hydrodynamics simulations of isolated Milky Way-mass disk galaxies that include cold, interstellar gas to test subgrid prescriptions for star formation (SF). Our fiducial model combines a Schmidt law with a gravitational instability criterion, but we also test density thresholds and temperature ceilings. While SF histories are insensitive to the prescription for SF, the Kennicutt-Schmidt (KS) relations between SF rate and gas surface density can discriminate between models. We show that our fiducial model, with an SF efficiency per free-fall time of 1 per cent, agrees with spatially-resolved and azimuthally-averaged observed KS relations for neutral, atomic and molecular gas. Density thresholds do not perform as well. While temperature ceilings selecting cold, molecular gas can match the data for galaxies with solar metallicity, they are unsuitable for very low-metallicity gas and hence for cosmological simulations. We argue that SF criteria should be applied at the resolution limit rather than at a fixed physical scale, which means that we should aim for numerical convergence of observables rather than of the properties of gas labelled as star-forming. Our fiducial model yields good convergence when the mass resolution is varied by nearly 4 orders of magnitude, with the exception of the spatially-resolved molecular KS relation at low surface densities. For the gravitational instability criterion, we quantify the impact on the KS relations of gravitational softening, the SF efficiency, and the strength of supernova feedback, as well as of observable parameters such as the inclusion of ionized gas, the averaging scale, and the metallicity

    The impact of stochastic modeling on the predictive power of galaxy formation simulations

    Full text link
    All modern galaxy formation models employ stochastic elements in their sub-grid prescriptions to discretise continuous equations across the time domain. In this paper, we investigate how the stochastic nature of these models, notably star formation, black hole accretion, and their associated feedback, that act on small (<< kpc) scales, can back-react on macroscopic galaxy properties (e.g. stellar mass and size) across long (>> Gyr) timescales. We find that the scatter in scaling relations predicted by the EAGLE model implemented in the SWIFT code can be significantly impacted by random variability between re-simulations of the same object, even when galaxies are resolved by tens of thousands of particles. We then illustrate how re-simulations of the same object can be used to better understand the underlying model, by showing how correlations between galaxy stellar mass and black hole mass disappear at the highest black hole masses (MBH>108M_{\rm BH} > 10^8 M⊙_\odot), indicating that the feedback cycle may be interrupted by external processes. We find that although properties that are collected cumulatively over many objects are relatively robust against random variability (e.g. the median of a scaling relation), the properties of individual galaxies (such as galaxy stellar mass) can vary by up to 25\%, even far into the well-resolved regime, driven by bursty physics (black hole feedback) and mergers between galaxies. We suggest that studies of individual objects within cosmological simulations be treated with caution, and that any studies aiming to closely investigate such objects must account for random variability within their results.Comment: Accepted for publication in MNRA

    Hydrodynamic simulations of the Disk of Gas Around Supermassive black holes (HDGAS) -I; Molecular Gas Dynamics

    Get PDF
    We present hydrodynamic simulations of the interstellar medium (ISM) within the circumnuclear disk (CND) of a typical AGN-dominated galaxy influenced by mechanical feedback from an active galactic nucleus(AGN). The simulations are coupled with the CHIMES non-equilibrium chemistry network to treat the radiative-cooling and AGN-heating. A focus is placed on the central 100 pc scale where AGN outflows are coupled to the ISM and constrained by observational Seyfert-2 galaxies. AGN-feedback models are implemented with different wind-velocity and mass-loading factors. We post-process the simulation snapshots with a radiative-transfer code to obtain the molecular emission lines. We find that the inclusion of an AGN promotes the formation of CO in clumpy and dense regions surrounding supermassive-blackholes (SMBH). The CO(1-0) intensity maps (<<6 Myr) in the CND seem to match well with observations of NGC 1068 with a best match for a model with 5000 km/s\rm km/s wind-velocity and a high mass-loading factor. We attempt to discern between competing explanations for the apparent counter-rotating gas disk in the NGC 1068 through an analysis of kinematic maps of the CO line emission. We suggest that mechanical AGN-feedback could explain the alignment-stability of position-angle across the different CND radii around the SMBH through momentum and energy loading of the wind. It is the wind-velocity that drives the disk out of alignment on a 100 pc scale for a long period of time. The position-velocity diagrams are in broad agreement with the predicted Keplerian rotation-curve in the model without-AGN, but the AGN models exhibit a larger degree of scatter, in better agreement with NGC 1068 observations.Comment: 16 pages, 13 figures. Accepted for publication in MNRA

    Hydrodynamic simulations of the disc of gas around supermassive black holes (HDGAS) – I. Molecular gas dynamics

    Get PDF
    We present hydrodynamic simulations of the interstellar medium (ISM) within the circumnuclear disc (CND) of a typical active galactic nucleus (AGN)-dominated galaxy influenced by mechanical feedback from an AGN. The simulations are coupled with the CHIMES non-equilibrium chemistry network to treat the radiative-cooling and AGN-heating. A focus is placed on the central 100 pc scale where AGN outflows are coupled to the ISM and constrained by observational Seyfert-2 galaxies. AGN-feedback models are implemented with different wind-velocity and mass-loading factors. We post-process the simulation snapshots with a radiative-transfer code to obtain the molecular emission lines. We find that the inclusion of an AGN promotes the formation of CO in clumpy and dense regions surrounding supermassive black holes (SMBHs). The CO(1-0) intensity maps (<6 Myr) in the CND seem to match well with observations of NGC 1068 with a best match for a model with 5000 km s-1 wind-velocity and a high mass-loading factor. We attempt to discern between competing explanations for the apparent counter-rotating gas disc in the NGC 1068 through an analysis of kinematic maps of the CO line emission. We suggest that mechanical AGN-feedback could explain the alignment-stability of position-angle across the different CND radii around the SMBH through momentum and energy loading of the wind. It is the wind-velocity that drives the disc out of alignment on a 100 pc scale for a long period of time. The position-velocity diagrams are in broad agreement with the predicted Keplerian rotation-curve in the model without AGN, but the AGN models exhibit a larger degree of scatter, in better agreement with NGC 1068 observations

    The FLAMINGO project: cosmological hydrodynamical simulations for large-scale structure and galaxy cluster surveys

    Get PDF
    We introduce the Virgo Consortium's FLAMINGO suite of hydrodynamical simulations for cosmology and galaxy cluster physics. To ensure the simulations are sufficiently realistic for studies of large-scale structure, the subgrid prescriptions for stellar and AGN feedback are calibrated to the observed low-redshift galaxy stellar mass function and cluster gas fractions. The calibration is performed using machine learning, separately for three resolutions. This approach enables specification of the model by the observables to which they are calibrated. The calibration accounts for a number of potential observational biases and for random errors in the observed stellar masses. The two most demanding simulations have box sizes of 1.0 and 2.8 Gpc and baryonic particle masses of 1×1081\times10^8 and 1×109M⊙1\times10^9 \text{M}_\odot, respectively. For the latter resolution the suite includes 12 model variations in a 1 Gpc box. There are 8 variations at fixed cosmology, including shifts in the stellar mass function and/or the cluster gas fractions to which we calibrate, and two alternative implementations of AGN feedback (thermal or jets). The remaining 4 variations use the unmodified calibration data but different cosmologies, including different neutrino masses. The 2.8 Gpc simulation follows 3×10113\times10^{11} particles, making it the largest ever hydrodynamical simulation run to z=0z=0. Lightcone output is produced on-the-fly for up to 8 different observers. We investigate numerical convergence, show that the simulations reproduce the calibration data, and compare with a number of galaxy, cluster, and large-scale structure observations, finding very good agreement with the data for converged predictions. Finally, by comparing hydrodynamical and `dark-matter-only' simulations, we confirm that baryonic effects can suppress the halo mass function and the matter power spectrum by up to ≈20\approx20 per cent.Comment: 44 pages, 23 figures. Accepted for publication in MNRAS. V3 includes changes made in published version: jet simulations were redone to fix a bug, but the differences are nearly invisible. For visualizations, see the FLAMINGO website at https://flamingo.strw.leidenuniv.nl
    corecore