4,110 research outputs found

    Energy loss mechanism for suspended micro- and nanoresonators due to the Casimir force

    Full text link
    A so far not considered energy loss mechanism in suspended micro- and nanoresonators due to noncontact acoustical energy loss is investigated theoretically. The mechanism consists on the conversion of the mechanical energy from the vibratory motion of the resonator into acoustic waves on large nearby structures, such as the substrate, due to the coupling between the resonator and those structures resulting from the Casimir force acting over the separation gaps. Analytical expressions for the resulting quality factor Q for cantilever and bridge micro- and nanoresonators in close proximity to an underlying substrate are derived and the relevance of the mechanism is investigated, demonstrating its importance when nanometric gaps are involved

    Measurements of scattering observables for the pdpd break-up reaction

    Get PDF
    High-precision measurements of the scattering observables such as cross sections and analyzing powers for the proton-deuteron elastic and break-up reactions have been performed at KVI in the last two decades and elsewhere to investigate various aspects of the three-nucleon force (3NF) effects simultaneously. In 2006 an experiment was performed to study these effects in p⃗+d\vec{p}+d break-up reaction at 135 MeV with the detection system, Big Instrument for Nuclear polarization Analysis, BINA. BINA covers almost the entire kinematical phase space of the break-up reaction. The results are interpreted with the help of state-of-the-art Faddeev calculations and are partly presented in this contribution.Comment: Proceedings of 19th International IUPAP Conference on Few-Body Problems in Physics, Bonn University, 31.08 - 05.09.2009, Bonn, GERMAN

    The Effects of Cellulase on Cell Wall Structure and the Rumen Digestion of Alfalfa Silage

    Get PDF
    First- and second-cut alfalfa (Medicago sativa) was ensiled with no additive, microbial (Lactobacillus casei) inoculant, cellulase derived from Acremonium celluloytics Y-94, co-addition of inoculant and cellulase, and formic acid. The resultant silages were digested in the rumen of a dairy cow. The alfalfa and the silages were then examined with scanning electron microscope (SEM) and their chemical characteristics analyzed to evaluate the effects of cellulase on the quality of alfalfa silage and its cell wall structure. The addition of cellulase lend to both a greater loss of parenchymal tissue and decrease in digestibility during rumen degradation than did the other additives moreover, photos taken during SEM examination also showed that cellulase affected cell wall decomposition. The results of this study may suggest that the addition of cellulase affects fiber digestion by ruminant animals

    Interaction and Localization of One-electron Orbitals in an Organic Molecule: Fictitious Parameter Analysis for Multi-physics Simulations

    Full text link
    We present a new methodology to analyze complicated multi-physics simulations by introducing a fictitious parameter. Using the method, we study quantum mechanical aspects of an organic molecule in water. The simulation is variationally constructed from the ab initio molecular orbital method and the classical statistical mechanics with the fictitious parameter representing the coupling strength between solute and solvent. We obtain a number of one-electron orbital energies of the solute molecule derived from the Hartree-Fock approximation, and eigenvalue-statistical analysis developed in the study of nonintegrable systems is applied to them. Based on the results, we analyze localization properties of the electronic wavefunctions under the influence of the solvent.Comment: 4 pages, 5 figures, the revised version will appear in J. Phys. Soc. Jpn. Vol.76 (No.1

    Chiral perturbation theory in a magnetic background - finite-temperature effects

    Full text link
    We consider chiral perturbation theory for SU(2) at finite temperature TT in a constant magnetic background BB. We compute the thermal mass of the pions and the pion decay constant to leading order in chiral perturbation theory in the presence of the magnetic field. The magnetic field gives rise to a splitting between Mπ0M_{\pi^0} and Mπ±M_{\pi^{\pm}} as well as between Fπ0F_{\pi^0} and Fπ±F_{\pi^{\pm}}. We also calculate the free energy and the quark condensate to next-to-leading order in chiral perturbation theory. Both the pion decay constants and the quark condensate are decreasing slower as a function of temperature as compared to the case with vanishing magnetic field. The latter result suggests that the critical temperature TcT_c for the chiral transition is larger in the presence of a constant magnetic field. The increase of TcT_c as a function of BB is in agreement with most model calculations but in disagreement with recent lattice calculations.Comment: 24 pages and 9 fig

    Class I major histocompatibility complexes loaded by a periodate trigger

    Get PDF
    Class I major histocompatibility complexes (MHCs) present peptide ligands on the cell surface for recognition by appropriate cytotoxic T cells. The unstable nature of unliganded MHC necessitates the production of recombinant class I complexes through in vitro refolding reactions in the presence of an added excess of peptides. This strategy is not amenable to high-throughput production of vast collections of class I complexes. To address this issue, we recently designed photocaged MHC ligands that can be cleaved by a UV light trigger in the MHC bound state under conditions that do not affect the integrity of the MHC structure. The results obtained with photocaged MHC ligands demonstrate that conditional MHC ligands can form a generally applicable concept for the creation of defined peptide−MHCs. However, the use of UV exposure to mediate ligand exchange is unsuited for a number of applications, due to the lack of UV penetration through cell culture systems and due to the transfer of heat upon UV irradiation, which can induce evaporation. To overcome these limitations, here, we provide proof-of-concept for the generation of defined peptide−MHCs by chemical trigger-induced ligand exchange. The crystal structure of the MHC with the novel chemosensitive ligand showcases that the ligand occupies the expected binding site, in a conformation where the hydroxyl groups should be reactive to periodate. We proceed to validate this technology by producing peptide−MHCs that can be used for T cell detection. The methodology that we describe here should allow loading of MHCs with defined peptides in cell culture devices, thereby permitting antigen-specific T cell expansion and purification for cell therapy. In addition, this technology will be useful to develop miniaturized assay systems for performing high-throughput screens for natural and unnatural MHC ligands

    Correct quantum chemistry in a minimal basis from effective Hamiltonians

    Get PDF
    We describe how to create ab-initio effective Hamiltonians that qualitatively describe correct chemistry even when used with a minimal basis. The Hamiltonians are obtained by folding correlation down from a large parent basis into a small, or minimal, target basis, using the machinery of canonical transformations. We demonstrate the quality of these effective Hamiltonians to correctly capture a wide range of excited states in water, nitrogen, and ethylene, and to describe ground and excited state bond-breaking in nitrogen and the chromium dimer, all in small or minimal basis sets

    Measurement of the Negative Muon Anomalous Magnetic Moment to 0.7 ppm

    Full text link
    The anomalous magnetic moment of the negative muon has been measured to a precision of 0.7 parts per million (ppm) at the Brookhaven Alternating Gradient Synchrotron. This result is based on data collected in 2001, and is over an order of magnitude more precise than the previous measurement of the negative muon. The result a_mu= 11 659 214(8)(3) \times 10^{-10} (0.7 ppm), where the first uncertainty is statistical and the second is sytematic, is consistend with previous measurements of the anomaly for the positive and negative muon. The average for the muon anomaly a_{mu}(exp) = 11 659 208(6) \times 10^{-10} (0.5ppm).Comment: 4 pages, 4 figures, submitted to Physical Review Letters, revised to reflect referee comments. Text further revised to reflect additional referee comments and a corrected Fig. 3 replaces the older versio

    Effect of rye bread breakfasts on subjective hunger and satiety: a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several studies report that dietary fibre from different sources promotes the feeling of satiety and suppresses hunger. However, results for cereal fibre from rye are essentially lacking. The aim of the present study was to investigate subjective appetite during 8 h after intake of iso-caloric rye bread breakfasts varying in rye dietary fibre composition and content.</p> <p>Methods</p> <p>The study was divided into two parts. The first part (n = 16) compared the satiating effect of iso-caloric bread breakfasts including different milling fractions of rye (bran, intermediate fraction (B4) and sifted flour). The second part (n = 16) investigated the dose-response effect of rye bran and intermediate rye fraction, each providing 5 or 8 g of dietary fibre per iso-caloric bread breakfast. Both study parts used a wheat bread breakfast as reference and a randomised, within-subject comparison design. Appetite (hunger, satiety and desire to eat) was rated regularly from just before breakfast at 08:00 until 16:00. Amount, type and timing of food and drink intake were standardised during the study period.</p> <p>Results</p> <p>The Milling fractions study showed that each of the rye breakfasts resulted in a suppressed appetite during the time period before lunch (08:3012:00) compared with the wheat reference bread breakfast. At a comparison between the rye bread breakfasts the one with rye bran induced the strongest effect on satiety. In the afternoon the effect from all three rye bread breakfasts could still be seen as a decreased hunger and desire to eat compared to the wheat reference bread breakfast.</p> <p>In the Dose-response study both levels of rye bran and the lower level of intermediate rye fraction resulted in an increased satiety before lunch compared with the wheat reference bread breakfast. Neither the variation in composition between the milling fractions nor the different doses resulted in significant differences in any of the appetite ratings when compared with one another.</p> <p>Conclusion</p> <p>The results show that rye bread can be used to decrease hunger feelings both before and after lunch when included in a breakfast meal. Rye bran induces a stronger effect on satiety than the other two rye fractions used when served in iso-caloric portions.</p> <p>Trial Registration</p> <p>Trial registration number NCT00876785</p
    • …
    corecore