2,250 research outputs found
Propagation dynamics on networks featuring complex topologies
Analytical description of propagation phenomena on random networks has
flourished in recent years, yet more complex systems have mainly been studied
through numerical means. In this paper, a mean-field description is used to
coherently couple the dynamics of the network elements (nodes, vertices,
individuals...) on the one hand and their recurrent topological patterns
(subgraphs, groups...) on the other hand. In a SIS model of epidemic spread on
social networks with community structure, this approach yields a set of ODEs
for the time evolution of the system, as well as analytical solutions for the
epidemic threshold and equilibria. The results obtained are in good agreement
with numerical simulations and reproduce random networks behavior in the
appropriate limits which highlights the influence of topology on the processes.
Finally, it is demonstrated that our model predicts higher epidemic thresholds
for clustered structures than for equivalent random topologies in the case of
networks with zero degree correlation.Comment: 10 pages, 5 figures, 1 Appendix. Published in Phys. Rev. E (mistakes
in the PRE version are corrected here
Etude du lac collinaire de Sadine 1 : installations et premiers résultats
Rapport d'installation des 2 premiers enregistreurs pluviométrique et limnimétrique susceptibles d'être équipés d'émetteur ARGOS et de permettre une télétransmission des données. Ces 2 appareils ont été installés sur un lac collinaire de la région de Maktar. Définition des termes du bilan hydrologique en matière de retenue artificielle. Présentation de quelques résultats. (Résumé d'auteur
Cadmium accumulation and interactions with zinc, copper, and manganese, analysed by ICP-MS in a long-term Caco-2 TC7 cell model
The influence of long-term exposure to cadmium (Cd) on essential minerals was investigated using a Caco-2
TC7 cells and a multi-analytical tool: microwave digestion and inductively coupled plasma mass spectrometry.
Intracellular levels, effects on cadmium accumulation, distribution, and reference concentration
ranges of the following elements were determined: Na, Mg, Ca, Cr, Fe, Mn, Co, Ni, Cu, Zn, Mo, and Cd.
Results showed that Caco-2 TC7 cells incubated long-term with cadmium concentrations ranging from 0 to
10 lmol Cd/l for 5 weeks exhibited a significant increase in cadmium accumulation. Furthermore, this
accumulation was more marked in cells exposed long-term to cadmium compared with controls, and that
this exposure resulted in a significant accumulation of copper and zinc but not of the other elements
measured. Interactions of Cd with three elements: zinc, copper, and manganese were particularly studied.
Exposed to 30 lmol/l of the element, manganese showed the highest inhibition and copper the lowest on
cadmium intracellular accumulation but Zn, Cu, and Mn behave differently in terms of their mutual
competition with Cd. Indeed, increasing cadmium in the culture medium resulted in a gradual and significant
increase in the accumulation of zinc. There was a significant decrease in manganese from 5 lmol
Cd/l exposure, and no variation was observed with copper.
Abbreviation: AAS – Atomic absorption spectrometry; CRM– Certified reference material; PBS – Phosphate
buffered saline without calcium and magnesium; DMEM – Dubelcco’s modified Eagle’s medium
Hybridization and interference effects for localized superconducting states in strong magnetic field
Within the Ginzburg-Landau model we study the critical field and temperature
enhancement for crossing superconducting channels formed either along the
sample edges or domain walls in thin-film magnetically coupled superconducting
- ferromagnetic bilayers. The corresponding Cooper pair wave function can be
viewed as a hybridization of two order parameter (OP) modes propagating along
the boundaries and/or domain walls. Different momenta of hybridized OP modes
result in the formation of vortex chains outgoing from the crossing point of
these channels. Near this crossing point the wave functions of the modes merge
giving rise to the increase in the critical temperature for a localized
superconducting state. The origin of this critical temperature enhancement
caused by the wave function squeezing is illustrated for a limiting case of
approaching parallel boundaries and/or domain walls. Using both the variational
method and numerical simulations we have studied the critical temperature
dependence and OP structure vs the applied magnetic field and the angle between
the crossing channels.Comment: 12 pages, 13 figure
Modular allylation of C(sp<sup>3</sup>)-H bonds by combining decatungstate photocatalysis and HWE olefination in flow
The late-stage introduction of allyl groups provides an opportunity to synthetic organic chemists for subsequent diversification, furnishing a rapid access to new chemical space. Here, we report the development of a modular synthetic sequence for the allylation of strong aliphatic C(sp(3))–H bonds. Our sequence features the merger of two distinct steps to accomplish this goal, including a photocatalytic Hydrogen Atom Transfer and an ensuing Horner–Wadsworth–Emmons (HWE) reaction. This practical protocol enables the modular and scalable allylation of valuable building blocks and has been applied to structurally complex molecules
Heavy fermion superconductivity and magnetic order in non-centrosymmetric
is a novel heavy fermion superconductor, crystallising in the
structure as a tetragonally distorted low symmetry variant of the
structure type. exhibits antiferromagnetic order at
K and enters into a heavy fermion superconducting state at
K. Large values of T/K and T refer to heavy quasiparticles forming Cooper pairs. Hitherto, is the first heavy fermion superconductor without a center of
symmetry.Comment: 4 pages, 4 figure
- …