14 research outputs found

    Anchoring ultrasmall FeIII-based nanoparticles on silica and titania mesostructures for syngas H2S purification

    No full text
    Mesostructured titania (Anatase) and silica (MCM-41) were proposed as supports to design highly active, selective, and regenerable FeIII-based nanostructured sorbents for mid-temperature H2S removal in a model sour syngas. The resulting sorbents (Fe–SiO2 and Fe–TiO2) were tested as H2S removers at 300 °C and exhibited high reactivity and regenerability over repeated sulfidation cycles, with the best sorption performances achieved by the silica-based sorbent. Specifically, Fe–SiO2 showed a constant sorption capacity of 19 ± 1 mgS gsorbent−1 after the first sulfidation cycle. Meanwhile, a lower sorption capacity of 10 ± 1 mgS gsorbent−1 was found for the Fe–TiO2 composite. As evidenced by combining 57Fe Mössbauer spectroscopy with DC magnetometry, the nature (amorphous or crystalline) and composition (SiO2 or TiO2) of the inorganic mesostructures played a crucial role in the formation of the ultrasmall FeIII-active phase: maghemite (γ-Fe2O3) and pseudobrookite (Fe2TiO5) in the case of silica and titania, respectively. Therefore, the performance can be mainly justified in the light of the different reactivity of the active phases (Fe2O3 vs Fe2TiO5). FeIII-active phase in the form of ultrasmall Fe2O3 nanoparticles (about 2 nm) homogeneously dispersed in a highly stable mesostructured silica support assured high reactivity (85%–100% of the active phase involvement) and regenerability in the mid-temperature range as for the sulfidation run during the repeated sulfidation cycles (steady performances) avoiding the common drawbacks of unsupported sorbents (unreacted core and sintering phenomena causing loss of activity)

    Dialkylamide as both capping agent and surfactant in a direct solvothermal synthesis of magnetite and titania nanoparticles

    No full text
    An ecofriendly, low-cost, one-pot solvothermal approach has been developed to prepare spherical magnetite nanoparticles with sizes in the 7–12 nm range capped with a dialkylamine. Iron isopropoxide, water vapor, absolute ethanol, oleic acid, and oleylamine were used as iron oxide precursor, hydrolysis agent, solvent and surfactants, respectively. The surfactants’ role was investigated and an accurate correlation among the synthetic parameters, the crystallographic phases, and both crystallite and particle size was found. The amounts of oleylamine and oleic acid and the temperature have been revealed to be the key parameters in order to tune particle size and their polydispersity. An in-depth study on the role of each surfactant has pointed out the fundamental role of the amine as a reduction promoter as demonstrated by using different amines and confirmed by Mössbauer measurements. A dual 1H NMR-Fourier transform infrared spectroscopy approach on selected experiments for the investigation of the capping agents (in the presence of a magnetic phase (Magnetite) or a diamagnetic one (Anatase) prepared in the same synthetic conditions) has been found to be fundamental to clarify the actual nature of the capping agent of the nanoparticles and the reactions involved between the surfactants. New insights on the reaction mechanism confirm the formation of an amide that represents a new cosurfactant for the size and shape regulation and a biocompatible molecular coating of magnetite and anatase nanoparticles

    Studying the effect of Zn-substitution on the magnetic and hyperthermic properties of cobalt ferrite nanoparticles

    Get PDF
    The possibility to finely control nanostructured cubic ferrites (MIIFe2O4) paves the way to design materials with the desired magnetic properties for specific applications. However, the strict and complex interrelation among the chemical composition, size, polydispersity, shape and surface coating renders their correlation with the magnetic properties not trivial to predict. In this context, this work aims to discuss the magnetic properties and the heating abilities of Zn-substituted cobalt ferrite nanoparticles with different zinc contents (ZnxCo1-xFe2O4 with 0 100 emu g-1). The increase in the zinc content up to x = 0.46 in the structure has resulted in an increase of the saturation magnetisation (Ms) at 5 K. High Ms values have also been revealed at room temperature (∼90 emu g-1) for both CoFe2O4 and Zn0.30Co0.70Fe2O4 samples and their heating ability has been tested. Despite a similar saturation magnetisation, the specific absorption rate value for the cobalt ferrite is three times higher than the Zn-substituted one. DC magnetometry results were not sufficient to justify these data, the experimental conditions of SAR and static measurements being quite different. The synergic combination of DC with AC magnetometry and 57Fe Mössbauer spectroscopy represents a powerful tool to get new insights into the design of suitable heat mediators for magnetic fluid hyperthermia
    corecore