91 research outputs found

    Near-IR photodissociation of peroxy acetyl nitrate

    Get PDF
    Measurements of the C-H overtone transition strengths combined with estimates of the photodissociation cross sections for these transitions suggest that near-IR photodissociation of peroxy acetyl nitrate (PAN) is less significant (Jnear−IR ~3×10^−8 s^−1 at noon) in the lower atmosphere than competing sinks resulting from unimolecular decomposition and ultraviolet photolysis. This is in contrast to the photochemical behavior of a related peroxy nitrate, pernitric acid (PNA), that undergoes rapid near-IR photolysis in the atmosphere with Jnear−IR ~10^−5 s^−1 at noon (Roehl et al., 2002). This difference is attributed to the larger binding energy and larger number of vibrational degrees of 10 freedom in PAN, which make 4[Greek nu]CH the lowest overtone excitation with a high photodissociation yield (as opposed to 2[Greek nu]OH in PNA)

    Cis-cis and trans-perp HOONO: Action spectroscopy and isomerization kinetics

    Get PDF
    The weakly bound HOONO product of the OH + NO_2 + M reaction is studied using the vibrational predissociation that follows excitation of the first OH overtone (2nu1). We observe formation of both cis-cis and trans-perp conformers of HOONO. The trans-perp HOONO 2nu1 band is observed under thermal (223–238 K) conditions at 6971 cm^(–1). We assign the previously published (warmer temperature) HOONO spectrum to the 2nu1 band at 6365 cm^(–1) and 2nu1-containing combination bands of the cis-cis conformer of HOONO. The band shape of the trans-perp HOONO spectrum is in excellent agreement with the predicted rotational contour based on previous experimental and theoretical results, but the apparent origin of the cis-cis HOONO spectrum at 6365 cm^(–1) is featureless and significantly broader, suggesting more rapid intramolecular vibrational redistribution or predissociation in the latter isomer. The thermally less stable trans-perp HOONO isomerizes rapidly to cis-cis HOONO with an experimentally determined lifetime of 39 ms at 233 K at 13 hPa (in a buffer gas of predominantly Ar). The temperature dependence of the trans-perp HOONO lifetime in the range 223–238 K yields an isomerization barrier of 33±12 kJ/mol. New ab initio calculations of the structure and vibrational mode frequencies of the transition state perp-perp HOONO are performed using the coupled cluster singles and doubles with perturbative triples [CCSD(T)] model, using a correlation consistent polarized triple zeta basis set (cc-pVTZ). The energetics of cis-cis, trans-perp, and perp-perp HOONO are also calculated at this level [CCSD(T)/cc-pVTZ] and with a quadruple zeta basis set using the structure determined at the triple zeta basis set [CCSD(T)/cc-pVQZ//CCSD(T)/cc-pVTZ]. These calculations predict that the anti form of perp-perp HOONO has an energy of DeltaE0 = 42.4 kJ/mol above trans-perp HOONO, corresponding to an activation enthalpy of DeltaH298[double-dagger]0 = 41.1 kJ/mol. These results are in good agreement with statistical simulations based on a model developed by Golden, Barker, and Lohr. The simulated isomerization rates match the observed decay rates when modeled with a trans-perp to cis-cis HOONO isomerization barrier of 40.8 kJ/mol and a strong collision model. The quantum yield of cis-cis HOONO dissociation to OH and NO2 is also calculated as a function of photon excitation energy in the range 3500–7500 cm^(–1), assuming D0 = 83 kJ/mol. The quantum yield is predicted to vary from 0.15 to 1 over the observed spectrum at 298 K, leading to band intensities in the action spectrum that are highly temperature dependent; however, the observed relative band strengths in the cis-cis HOONO spectrum do not change substantially with temperature over the range 193–273 K. Semiempirical calculations of the oscillator strengths for 2nu1(cis-cis HOONO) and 2nu1(trans-perp HOONO) are performed using (1) a one-dimensional anharmonic model and (2) a Morse oscillator model for the OH stretch, and ab initio dipole moment functions calculated using Becke, Lee, Yang, and Parr density functional theory (B3LYP), Møller-Plesset pertubation theory truncated at the second and third order (MP2 and MP3), and quadratic configuration interaction theory using single and double excitations (QCISD). The QCISD level calculated ratio of 2nu1 oscillator strengths of trans-perp to cis-cis HOONO is 3.7:1. The observed intensities indicate that the concentration of trans-perp HOONO early in the OH + NO2 reaction is significantly greater than predicted by a Boltzmann distribution, consistent with statistical predictions of high initial yields of trans-perp HOONO from the OH + NO_2 + M reaction. In the atmosphere, trans-perp HOONO will isomerize nearly instantaneously to cis-cis HOONO. Loss of HOONO via photodissociation in the near-IR limits the lifetime of cis-cis HOONO during daylight to less than 45 h, other loss mechanisms will reduce the lifetime further

    Photodegradation of secondary organic aerosol generated from limonene oxidation by ozone studied with chemical ionization mass spectrometry

    Get PDF
    Photodegradation of secondary organic aerosol (SOA) prepared by ozone-initiated oxidation of D-limonene is studied with an action spectroscopy approach, which relies on detection of volatile photoproducts with chemical ionization mass-spectrometry as a function of the UV irradiation wavelength. Efficient photodegradation is observed for a broad range of ozone (0.1–300 ppm) and D-limonene (0.02–3 ppm) concentrations used in the preparation of SOA. The observed photoproducts are dominated by oxygenated C1-C3 compounds such as methanol, formic acid, acetaldehyde, acetic acid, and acetone. The irradiation wavelength dependence of the combined yield of the photoproducts closely tracks the absorption spectrum of the SOA material suggesting that photodegradation is not limited to the UV wavelengths. Kinetic simulations suggest that RO<sub>2</sub>+HO<sub>2</sub>/RO<sub>2</sub> reactions represent the dominant route to photochemically active carbonyl and peroxide species in the limonene SOA prepared in these experiments. Similar photodegradation processes are likely to occur in realistic SOA produced by OH- or O<sub>3</sub>-initiated oxidation of biogenic volatile organic compounds in clean air

    Effect of humidity on the composition of isoprene photooxidation secondary organic aerosol

    Get PDF
    The effect of relative humidity (RH) on the composition and concentrations of gas-phase products and secondary organic aerosol (SOA) generated from the photooxidation of isoprene under high-NO<sub>x</sub> conditions was investigated. Experiments were performed with hydrogen peroxide as the OH precursor and in the absence of seed aerosol. The relative yields of most gas-phase products were the same regardless of initial water vapor concentration with exception of hydroxyacetone and glycolaldehyde, which were considerably affected by RH. A significant change was observed in the SOA composition, with many unique condensed-phase products formed under humid (90 % RH) vs. dry (<2 % RH) conditions, without any detectable effect on the rate and extent of the SOA mass growth. There is a 40 % reduction in the number and relative abundance of distinct particle-phase nitrogen-containing organic compounds (NOC) detected by high resolution mass spectrometry. The suppression of condensation reactions, which produce water as a product, is the most important chemical effect of the increased RH. For example, the total signal from oligomeric esters of 2-methylglyceric acid was reduced by about 60 % under humid conditions and the maximum oligomer chain lengths were reduced by 7–11 carbons. Oligomers formed by addition mechanisms, without direct involvement of water, also decreased at elevated RH but to a much smaller extent. The observed reduction in the extent of condensation-type oligomerization at high RH may have substantial impact on the phase characteristics and hygroscopicity of the isoprene aerosol. The reduction in the amount of organic nitrates in the particle phase has implications for understanding the budget of NOC compounds

    Molecular composition of particulate matter emissions from dung and brushwood burning household cookstoves in Haryana, India

    Get PDF
    Emissions of airborne particles from biomass burning are a significant source of black carbon (BC) and brown carbon (BrC) in rural areas of developing countries where biomass is the predominant energy source for cooking and heating. This study explores the molecular composition of organic aerosols from household cooking emissions with a focus on identifying fuel-specific compounds and BrC chromophores. Traditional meals were prepared by a local cook with dung and brushwood-fueled cookstoves in a village in Palwal district, Haryana, India. Cooking was done in a village kitchen while controlling for variables including stove type, fuel moisture, and meal. Fine particulate matter (PM2.5) emissions were collected on filters, and then analyzed via nanospray desorption electrospray ionization-high-resolution mass spectrometry (nano-DESI-HRMS) and high-performance liquid chromatography-photodiode array-high-resolution mass spectrometry (HPLC-PDA-HRMS) techniques. The nano-DESI-HRMS analysis provided an inventory of numerous compounds present in the particle phase. Although several compounds observed in this study have been previously characterized using gas chromatography methods a majority of the species in the nano-DESI spectra were newly observed biomass burning compounds. Both the stove (chulha or angithi) and the fuel (brushwood or dung) affected the composition of organic aerosols. The geometric mean of the PM2.5 emission factor and the observed molecular complexity increased in the following order: brushwood-chulha (7.3±1.8 g kg-1 dry fuel, 93 compounds), dung-chulha (21.1±4.2 g kg-1 dry fuel, 212 compounds), and dung-angithi (29.8±11.5 g kg-1 dry fuel, 262 compounds). The mass-normalized absorption coefficient (MACbulk) for the organic-solvent extractable material for brushwood PM2.5 was 3.7±1.5 and 1.9±0.8m2 g-1 at 360 and 405 nm, respectively, which was approximately a factor of two higher than that for dung PM2.5. The HPLC-PDA-HRMS analysis showed that, regardless of fuel type, the main chromophores were CxHyOz lignin fragments. The main chromophores accounting for the higher MACbulk values of brushwood PM2.5 were C8H10O3 (tentatively assigned to syringol), nitrophenols C8H9NO4, and C10H10O3 (tentatively assigned to methoxycinnamic acid)

    Temperature and Pressure Dependence of High-Resolution Air-Broadened Absorption Cross Sections of NO_2(415−525 nm)

    Get PDF
    Cross sections of air-broadened NO_2 in the 415−525 nm region are reported. These are retrieved from 21 absorption spectra recorded at 0.060 cm^(-1) resolution with the McMath−Pierce Fourier Transform Spectrometer located on Kitt Peak in Arizona. The measurements are obtained for pressures (1−760 Torr) and temperatures (220−298 K) that are representative of typical tropospheric and stratospheric conditions. Two sigma uncertainty (95% confidence interval ≈ 2σ_(mean)) for the absolute absorption cross sections is below ±7% over the reported wavelength range. The average integrated intensity of all our data is 〈σ〉_(400-500 nm) = 4.53 × 10^(-17) cm^2 nm, which is within 0.2% of the averaged value from the recent literature. The wavelength (referred to vacuum) accuracy is 0.011 cm^(-1) (2.8 × 10^(-4) nm at 500 nm) and precision is 0.0022 cm^(-1) throughout the investigated wavelength range. In agreement with previous observations, high-resolution features in the NO_2 absorption spectrum display a strong pressure dependence with an effective pressure broadening parameter of 0.116 ± 0.003 cm^(-1)/atm (the rate of increase of Lorentzian half width at half-maximum with pressure). Temperature has a relatively minor effect on the shapes of individual high-resolution features, but it exerts a complex dependence on the relative line intensities. Absorption cross sections reported here represent the highest resolution data available over a substantial (>100 nm) wavelength range for quantitative analysis of NO_2 atmospheric column absorption spectra

    Nitrogen-containing secondary organic aerosol formation by acrolein reaction with ammonia/ammonium

    Get PDF
    Ammonia-driven carbonyl-to-imine conversion is an important formation pathway to the nitrogen-containing organic compounds (NOCs) in secondary organic aerosols (SOAs). Previous studies have mainly focused on the dicarbonyl compounds as the precursors of light-absorbing NOCs. In this work, we investigated whether acrolein could also act as an NOC precursor. Acrolein is the simplest α, β-unsaturated mono-carbonyl compound, and it is ubiquitous in the atmosphere. Experiments probing multiphase reactions of acrolein as well as bulk aqueous-phase experiments were carried out to study the reactivity of acrolein towards ammonia and ammonium ions. Molecular characterization of the products based on gas chromatography mass spectrometry, high-resolution mass spectrometry, surface-enhanced Raman spectrometry and ultraviolet/visible spectrophotometry was used to propose possible reaction mechanisms. We observed 3-methylpyridine (commonly known as 3-picoline) in the gas phase in Tedlar bags filled with gaseous acrolein and ammonia or ammonium aerosols. In the ammonium-containing aqueous phase, oligomeric compounds with formulas (C3H4O)m(C3H5N)n and pyridinium compounds like (C3H4O)2C6H8N+ were observed as the products. The pathway to 3-methylpyridine was proposed to be the intramolecular carbon–carbon addition of the hemiaminal, which resulted from sequential carbonyl-to-imine conversions of acrolein molecules. The 3-methylpyridine was formed in the aqueous phase, but some of the 3-methylpyridine could revolatilize to the gas phase, explaining the observation of gaseous 3-methylpyridine in the bags. The (C3H4O)2C6H8N+ was a carbonyl-to-hemiaminal product from acrolein dimer and 3-methylpyridine, while the oligomeric products of (C3H4O)m(C3H5N)n were polymers of acroleins and propylene imines formed via carbonyl-to-imine conversion and condensation reactions. The pH value effect on the liquid products was also studied in the bulk aqueous-phase experiments. While the oligomeric compounds were forming in both acidic and alkaline conditions, the pyridinium products favored moderately acidic conditions. Both the oligomeric products and the pyridinium salts are light-absorbing materials. This work suggests that acrolein may serve as a precursor of light-absorbing heterocyclic NOCs in SOA. Therefore, secondary reactions of α, β-unsaturated aldehydes with reduced nitrogen should be taken into account as a source of light-absorbing NOCs in SOA.</p
    • …
    corecore