267 research outputs found

    Preliminary structural design of composite main rotor blades for minimum weight

    Get PDF
    A methodology is developed to perform minimum weight structural design for composite or metallic main rotor blades subject to aerodynamic performance, material strength, autorotation, and frequency constraints. The constraints and load cases are developed such that the final preliminary rotor design will satisfy U.S. Army military specifications, as well as take advantage of the versatility of composite materials. A minimum weight design is first developed subject to satisfying the aerodynamic performance, strength, and autorotation constraints for all static load cases. The minimum weight design is then dynamically tuned to avoid resonant frequencies occurring at the design rotor speed. With this methodology, three rotor blade designs were developed based on the geometry of the UH-60A Black Hawk titanium-spar rotor blade. The first design is of a single titanium-spar cross section, which is compared with the UH-60A Black Hawk rotor blade. The second and third designs use single and multiple graphite/epoxy-spar cross sections. These are compared with the titanium-spar design to demonstrate weight savings from use of this design methodology in conjunction with advanced composite materials

    Improvements to tilt rotor performance through passive blade twist control

    Get PDF
    A passive blade twist control is presented in which the twist distribution of a tilt rotor blade is elastically changed as a function of rotor speed. The elastic twist deformation is used to achieve two different blade twist distributions corresponding to the two rotor speeds used on conventional tilt rotors in hover and forward flight. By changing the blade twist distribution, the aerodynamic performance can be improved in both modes of flight. The concept presented obtains a change in twist distribution with extension-twist-coupled composite blade structure. This investigation first determines the linear twists which are optimum for each flight mode. Based on the optimum linear twist distributions, three extension-twist-coupled blade designs are developed using coupled-beam and laminate analyses integrated with an optimization analysis. The designs are optimized for maximum twist deformation subject to material strength limitations. The aerodynamic performances of the final designs are determined which show that the passive blade twist control concept is viable, and can enhance conventional tilt rotor performance

    A preliminary investigation of finite-element modeling for composite rotor blades

    Get PDF
    The results from an initial phase of an in-house study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of elastic couplings are presented. Large degree of freedom shell finite element models of an extension twist coupled composite tube were developed and analyzed using MSC/NASTRAN. An analysis employing a simplified beam finite element representation of the specimen with the equivalent engineering stiffness was additionally performed. Results from the shell finite element normal modes and frequency analysis were compared to those obtained experimentally, showing an agreement within 13 percent. There was appreciable degradation in the frequency prediction for the torsional mode, which is elastically coupled. This was due to the absence of off-diagonal coupling terms in the formulation of the equivalent engineering stiffness. Parametric studies of frequency variation due to small changes in ply orientation angle and ply thickness were also performed. Results showed linear frequency variations less than 2 percent per 1 degree variation in the ply orientation angle, and 1 percent per 0.0001 inch variation in the ply thickness

    Direct measurements of light attenuation by epiphytes on eelgrass \u3cem\u3eZostera marina\u3c/em\u3e

    Get PDF
    Declines in the seagrass Zostera marina L. in estuaries and lagoons have been attributed in part to reductions in irradiance reaching the seagrass blades. Epiphytes growing on Z. marina have the potential to attenuate a large fraction of the light that would otherwise reach the blades. This problem has previously been studied by measuring light penetration through homogenized epiphytic slurries or through glass slides fouled with epiphytes. However, the latter may not represent the natural succession or species composition found on live Z. marina leaves and the former does not preserve the structure of the epiphytic complex. Further, past studies have not measured attenuation across the full range of epiphytic densities found in the field. In this study, we measured light penetration across a wide range of epiphytic densities by holding scraped and unscraped Z. marina blades over a submerged light sensor. Results compared well with past studies at low epiphyte densities, with strong reductions in light penetration as density increased. However, at higher densities, penetration leveled off to a relatively constant value as the epiphytes floated out from the edges of the blade. Studies using slurries did not capture this phenomenon and thus predicted decreasing penetration down to 0%

    Dynamic analysis of pretwisted elastically-coupled rotor blades

    Get PDF
    The accuracy of using a one-dimensional analysis to predict frequencies of elastically-coupled highly-twisted rotor blades is addressed. Degrees of freedom associated with shear deformation are statically condensed from the formulation, so the analysis uses only those degrees of freedom associated with classical beam theory. The effects of cross section deformation (warping) are considered, and are shown to become significant for some types of elastic coupling. Improved results are demonstrated for highly-coupled blade structures through account of warping in a local cross section analysis, without explicit inclusion of these effects in the beam analysis. A convergence study is also provided which investigates the potential for improving efficiency of elastically-coupled beam analysis through implementation of a p-version beam finite element

    Glucocorticoids: Fuelling the Fire of Atherosclerosis or Therapeutic Extinguishers?

    Get PDF
    Glucocorticoids are steroid hormones with key roles in the regulation of many physiological systems including energy homeostasis and immunity. However, chronic glucocorticoid excess, highlighted in Cushing’s syndrome, is established as being associated with increased cardiovascular disease (CVD) risk. Atherosclerosis is the major cause of CVD, leading to complications including coronary artery disease, myocardial infarction and heart failure. While the associations between glucocorticoid excess and increased prevalence of these complications are well established, the mechanisms underlying the role of glucocorticoids in development of atheroma are unclear. This review aims to better understand the importance of glucocorticoids in atherosclerosis and to dissect their cell-specific effects on key processes (e.g., contractility, remodelling and lesion development). Clinical and pre-clinical studies have shown both athero-protective and pro-atherogenic responses to glucocorticoids, effects dependent upon their multifactorial actions. Evidence indicates regulation of glucocorticoid bioavailability at the vasculature is complex, with local delivery, pre-receptor metabolism, and receptor expression contributing to responses linked to vascular remodelling and inflammation. Further investigations are required to clarify the mechanisms through which endogenous, local glucocorticoid action and systemic glucocorticoid treatment promote/inhibit atherosclerosis. This will provide greater insights into the potential benefit of glucocorticoid targeted approaches in the treatment of cardiovascular disease

    Stiffness Characteristics of Composite Rotor Blades With Elastic Couplings

    Get PDF
    Recent studies on rotor aeroelastic response and stability have shown the beneficial effects of incorporating elastic couplings in composite rotor blades. However, none of these studies have clearly identified elastic coupling limits and the effects of elastic couplings on classical beam stiffnesses of representative rotor blades. Knowledge of these limits and effects would greatly enhance future aeroelastic studies involving composite rotor blades. The present study addresses these voids and provides a preliminary design database for investigators who may wish to study the effects of elastic couplings on representative blade designs. The results of the present study should provide a basis for estimating the potential benefits associated with incorporating elastic couplings without the need for first designing a blade cross section and then performing a cross-section analysis to obtain the required beam section properties as is customary in the usual one-dimensional beam-type approach

    Tiltrotor Vibration Reduction Through Higher Harmonic Control

    Get PDF
    The results of a joint NASA/Army/Bell Helicopter Textron wind-tunnel test to assess the potential of higher harmonic control (HHC) for reducing vibrations in tiltrotor aircraft operating in the airplane mode of flight, and to evaluate the effectiveness of a Bell-developed HHC algorithm called MAVSS (Multipoint Adaptive Vibration Suppression System) are presented. The test was conducted in the Langley Transonic Dynamics Tunnel using an unpowered 1/5-scale semispan aeroelastic model of the V-22 which was modified to incorporate an HHC system employing both the rotor swashplate and the wing flaperon. The effectiveness of the swashplate and the flaperon acting either singly or in combination in reducing IP and 3P wing vibrations over a wide range of tunnel airspeeds and rotor rotational speeds was demonstrated. The MAVSS algorithm was found to be robust to variations in tunnel airspeed and rotor speed, requiring only occasional on-line recalculations of the system transfer matrix. HHC had only a small (usually beneficial) effect on blade loads but increased pitch link loads by 25%. No degradation in aeroelastic stability was noted for any of the conditions tested

    Appendix: Results obtained to date

    Get PDF
    Optimization procedures are described for the rotor blade design process by integrating appropriate disciplines and accounting for important interactions among the disciplines. Progress is reported in the areas of aerodynamic performance optimization, dynamic optimization, optimum placement of tuning masses for vibration reduction, and structural optimization. Selected results from these activities are highlighted in this appendix

    Aeroelastic Tailoring for Stability Augmentation and Performance Enhancements of Tiltrotor Aircraft

    Get PDF
    The requirements for increased speed and productivity for tiltrotors has spawned several investigations associated with proprotor aeroelastic stability augmentation and aerodynamic performance enhancements. Included among these investigations is a focus on passive aeroelastic tailoring concepts which exploit the anisotropic capabilities of fiber composite materials. Researchers at Langley Research Center and Bell Helicopter have devoted considerable effort to assess the potential for using these materials to obtain aeroelastic responses which are beneficial to the important stability and performance considerations of tiltrotors. Both experimental and analytical studies have been completed to examine aeroelastic tailoring concepts for the tiltrotor, applied either to the wing or to the rotor blades. This paper reviews some of the results obtained in these aeroelastic tailoring investigations and discusses the relative merits associated with these approaches
    • …
    corecore