3 research outputs found

    Effect of acidic electrolyzed water-induced bacterial inhibition and injury in live clam (Venerupis philippinarum) and mussel (Mytilus edulis)

    No full text
    The effect of acidic electrolyzed water (AEW) on inactivating Escherichia coli O104:H4, Listeria monocytogenes, Aeromonas hydrophila, Vibrio parahaemolyticus and Campylobacter jejuni in laboratory contaminated live clam (Venerupis philippinarum) and mussel (Mytilus edulis) was investigated. The initial levels of bacterial contamination were: in clam 4.9 to 5.7log10CFU/g, and in mussel 5.1 to 5.5log10CFU/g. Two types of AEW were used for treatment time intervals of 1 and 2h: strong (SAEW) with an available chlorine concentration (ACC) of 20mg/L, pH=3.1, and an oxidation-reduction potential (ORP) of 1150mV, and weak (WAEW) at ACC of 10mg/L, pH=3.55 and ORP of 950mV. SAEW and WAEW exhibited significant inhibitory activity against inoculated bacteria in both shellfish species with significant differences compared to saline solutions treatments (1–2% NaCl) and untreated controls (0h). SAEW showed the largest inhibitory activity, the extent of reduction (log10CFU/g) ranged from 1.4–1.7 for E. coli O104:H4; 1.0–1.6 for L. monocytogenes; 1.3–1.6 for A. hydrophila; 1.0–1.5 for V. parahaemolyticus; and 1.5–2.2 for C. jejuni in both types of shellfish. In comparison, significantly (P<0.05) lower inhibitory effect of WAEW was achieved compared to SAEW, where the extent of reduction (log10CFU/g) ranged from 0.7–1.1 for E. coli O104:H4; 0.6–0.9 for L. monocytogenes; 0.6–1.3 for A. hydrophila; 0.7–1.3 for V. parahaemolyticus; and 0.8–1.9 for C. jejuni in both types of shellfish. Among all bacterial strains examined in this study, AEW induced less bacterial injury (~0.1–1.0log10CFU/g) and more inactivation effect. This study revealed that AEW (10–20mg/L ACC) could be used to reduce bacterial contamination in live clam and mussel, which may help control possible unhygienic practices during production and processing of shellfish without apparent changes in the quality of the shellfish. •Depuration with AEW reduces bacterial contamination in live clam and mussel.•Depuration with 1–2% NaCl may not cause a reduction in bacterial contamination.•AEW may help control possible unhygienic practices during processing of shellfish

    Assessment of On-Site Treatment Process of Institutional Building’s Wastewater

    No full text
    This study is conducted to investigate the characteristics of outflow wastewater of the 1 m3 on-site wastewater treatment unit on the basis of the testing and measurement data of the samples that were taken during the study monitored period (August 2017 to January 2018). For this purpose, samples were taken on a weekly basis from the treated wastewater effluent and five quality parameters (biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), pH, E-coli counts) were monitored and measured. The average values of the five parameters were compared with the Jordanian standard maximum values, and water reuse in irrigation of plants classifications have been assessed and investigated. Average values of BOD, COD, TSS, pH, and E-coli in treated wastewater were 11 mg/L, 104 mg/L, 15 mg/L, 7.51, and 387 counts, respectively. The installation of in-line ultraviolet (UV) unit in recirculating delivery system played a vital role in the reduction of counts far below the permissible maximum level (1000 counts). Based on national and international standards and criteria, results showed that the treated wastewater is suitable for the irrigation of two classifications of plants: (i) Fruit trees, road-green sides outside cities, and green landscape; (ii) Crops, commercial crops, and forest trees. Hence, such very low water flow rate treatment system can be utilized in refugees’ camps and water scarce residential areas in Jordan
    corecore