10,725 research outputs found

    Quasi-particle random phase approximation with quasi-particle-vibration coupling: application to the Gamow-Teller response of the superfluid nucleus 120^{120}Sn

    Get PDF
    We propose a self-consistent quasi-particle random phase approximation (QRPA) plus quasi-particle-vibration coupling (QPVC) model with Skyrme interactions to describe the width and the line shape of giant resonances in open-shell nuclei, in which the effect of superfluidity should be taken into account in both the ground state and the excited states. We apply the new model to the Gamow-Teller resonance in the superfluid nucleus 120^{120}Sn, including both the isoscalar spin-triplet and the isovector spin-singlet pairing interactions. The strength distribution in 120^{120}Sn is well reproduced and the underlying microscopic mechanisms, related to QPVC and also to isoscalar pairing, are analyzed in detail.Comment: 32 pages, 11 figures, 4 table

    Separable states and the geometric phases of an interacting two-spin system

    Full text link
    It is known that an interacting bipartite system evolves as an entangled state in general, even if it is initially in a separable state. Due to the entanglement of the state, the geometric phase of the system is not equal to the sum of the geometric phases of its two subsystems. However, there may exist a set of states in which the nonlocal interaction does not affect the separability of the states, and the geometric phase of the bipartite system is then always equal to the sum of the geometric phases of its subsystems. In this paper, we illustrate this point by investigating a well known physical model. We give a necessary and sufficient condition in which a separable state remains separable so that the geometric phase of the system is always equal to the sum of the geometric phases of its subsystems.Comment: 13 page

    Time-resolved PhotoEmission Spectroscopy on a Metal/Ferroelectric Heterostructure

    Full text link
    In thin film ferroelectric capacitor the chemical and electronic structure of the electrode/FE interface can play a crucial role in determining the kinetics of polarization switching. We investigate the electronic structure of a Pt/BaTiO3/SrTiO3:Nb capacitor using time-resolved photoemission spectroscopy. The chemical, electronic and depth sensitivity of core level photoemission is used to probe the transient response of different parts of the upper electrode/ferroelectric interface to voltage pulse induced polarization reversal. The linear response of the electronic structure agrees quantitatively with a simple RC circuit model. The non-linear response due to the polarization switch is demonstrated by the time-resolved response of the characteristic core levels of the electrode and the ferroelectric. Adjustment of the RC circuit model allows a first estimation of the Pt/BTO interface capacitance. The experiment shows the interface capacitance is at least 100 times higher than the bulk capacitance of the BTO film, in qualitative agreement with theoretical predictions from the literature.Comment: 7 pages, 10 figures. Submitted to Phys. Rev.

    Two monotonic functions involving gamma function and volume of unit ball

    Full text link
    In present paper, we prove the monotonicity of two functions involving the gamma function Γ(x)\Gamma(x) and relating to the nn-dimensional volume of the unit ball Bn\mathbb{B}^n in Rn\mathbb{R}^n.Comment: 7 page

    Transition to Instability in a Kicked Bose-Einstein Condensate

    Full text link
    A periodically kicked ring of a Bose-Einstein condensate is considered as a nonlinear generalization of the quantum kicked rotor. For weak interactions between atoms, periodic motion (anti-resonance) becomes quasiperiodic (quantum beating) but remains stable. There exists a critical strength of interactions beyond which quasiperiodic motion becomes chaotic, resulting in an instability of the condensate manifested by exponential growth in the number of noncondensed atoms. Similar behavior is observed for dynamically localized states (essentially quasiperiodic motions), where stability remains for weak interactions but is destroyed by strong interactions.Comment: 4 pages, 6 figs. A new affiliation is added. Accepted by Phys. Rev. Let

    Towards a Unified Description of Isoscalar Giant Monopole Resonances in a Self-Consistent Quasiparticle-Vibration Coupling Approach

    Full text link
    "Why is the EoS for tin so soft?" is a longstanding question, which prevents us from determining the nuclear incompressibility KK_\infty accurately. To solve this puzzle, a fully self-consistent quasiparticle random phase approximation (QRPA) plus quasiparticle-vibration coupling (QPVC) approach based on Skyrme-Hartree-Fock-Bogoliubov is developed. We show that the many-body correlations introduced by QPVC, which shift the ISGMR energy in Sn isotopes by about 0.4 MeV more than the energy in 208^{208}Pb, play a crucial role in providing a unified description of the ISGMR in Sn and Pb isotopes. The best description of the experimental strength functions is given by SV-K226 and KDE0, which are characterized by incompressibility values K=K_\infty= 226 MeV and 229 MeV, respectively, at mean field level

    Interface Electronic Structure in a Metal/Ferroelectric Heterostructure under Applied Bias

    Full text link
    The effective barrier height between an electrode and a ferroelectric (FE) depends on both macroscopic electrical properties and microscopic chemical and electronic structure. The behavior of a prototypical electrode/FE/electrode structure, Pt/BaTiO3/Nb-doped SrTiO3, under in-situ bias voltage is investigated using X-Ray Photoelectron Spectroscopy. The full band alignment is measured and is supported by transport measurements. Barrier heights depend on interface chemistry and on the FE polarization. A differential response of the core levels to applied bias as a function of the polarization state is observed, consistent with Callen charge variations near the interface.Comment: 9 pages, 8 figures. Submitted to Phys. Rev.
    corecore