46 research outputs found

    Electrorheological Elastomers

    Get PDF
    Electrorheological elastomers (EREs) are smart elastomers with tunable dynamic properties by applying electric field. They are composed by polarizable particles dispersing within elastomers matrix. In comparison with electrorheological fluids, the particles in EREs do not undergo aggregation and sedimentation. Without the requirement of large-sized electromagnetic coils, the smart devices based on EREs have simpler structures than those based on magnetorheological (MR) elastomers. The unique properties and merits of EREs give rise to their bright future in various fields. During the past decades, great progress has been made by scholars around the world. In this chapter, the conception, preparation, physical mechanisms, classification, development, influence factors, and applications of electrorheological elastomers is reviewed

    VERGNet: Visual enhancement guided robotic grasp detection under low-light condition

    Get PDF
    Although existing grasp detection methods have achieved encouraging performance under well-light conditions, repetitive experiments have found that the detection performance would deteriorate drastically under low-light conditions. Although supplementary information can be provided by additional sensors, such as depth camera, the sparse and weak visual features still hinder the improvement of detection accuracy. In order to address these, we propose a visual enhancement guided grasp detection model (VERGNet) to improve the robustness of robotic grasping in low-light conditions. Firstly, a simultaneous grasp detection and low-light feature enhancement framework is designed, which integrates residual blocks with coordinate attention to re-optimize grasping features. Then, the unsupervised low-light feature enhancement strategy is adopted to reduce the dependence on paired data as well as improve the algorithmic robustness to low-light conditions. Extensive experiments are finally conducted on two newly-constructed low-light grasp datasets and the proposed method achieves 98.9% and 91.2% detection accuracy respectively, which are superior to comparative methods. Besides, the effectiveness in our method has also been validated in real-world low-light imaging scenarios

    Preparation and enhanced electrorheological properties of elastomers filled with rod-shaped TiO2 particles

    Get PDF
    The morphology of dispersed particles has been proven to have a significant impact on performance of electrorheological (ER) materials, while there is a lack of relevant research on its impact on the properties of electrorheological elastomers (EREs). In this study, the TiO2 particles with spherical, short rod, and long rod shape were fabricated with sol-gel method, and the EREs were prepared with these three kinds of particles as dispersion phase. Particle characterization results show that the rod-shape TiO2 particles with larger average size exhibit a combination of anatase and brookite phase. The viscoelastic properties of three types of EREs under varying strain amplitude and shear frequency were tested. The results indicate that the long rod-shape TiO2 particles filled EREs shows higher storage modulus G′ and higher relative ER effect within the electric field from 0 to 3 kV/mm. The observations indicate the use of rod-shape TiO2 particles in the form of brookite phase may help enhance the ER properties of elastomers. The investigation contributes to the designing, preparation, and application of anisotropic ERE

    High density lipoprotein promotes proliferation of adipose-derived stem cells via S1P1 receptor and Akt, ERK1/2 signal pathways

    Get PDF
    Introduction: Adipose-derived stem cells (ADSC) are non-hematopoietic mesenchymal stem cells that have shown great promise in their ability to differentiate into multiple cell lineages. Their ubiquitous nature and the ease of harvesting have attracted the attention of many researchers, and they pose as an ideal candidate for applications in regenerative medicine. Several reports have demonstrated that transplanting ADSC can promote repair of injured tissue and angiogenesis in animal models. Survival of these cells after transplant remains a key limiting factor for the success of ADSC transplantation. Circulating factors like High Density Lipoprotein (HDL) has been known to promote survival of other stems cells like bone marrow derived stem cells and endothelial progenitor cells, both by proliferation and by inhibiting cell apoptosis. The effect of HDL on transplanted adipose-derived stem cells in vivo is largely unknown. Methods: This study focused on exploring the effects of plasma HDL on ADSC and delineating the mechanisms involved in their proliferation after entering the bloodstream. Using the MTT and BrdU assays, we tested the effects of HDL on ADSC proliferation. We probed the downstream intracellular Akt and ERK1/2 signaling pathways and expression of cyclin proteins in ADSC using western blot. Results: Our study found that HDL promotes proliferation of ADSC, by binding to sphingosine-1-phosphate receptor-1(S1P1) on the cell membrane. This interaction led to activation of intracellular Akt and ERK1/2 signaling pathways, resulting in increased expression of cyclin D1 and cyclin E, and simultaneous reduction in expression of cyclin-dependent kinase inhibitors p21 and p27, therefore promoting cell cycle progression and cell proliferation. Conclusions: These studies raise the possibility that HDL may be a physiologic regulator of stem cells and increasing HDL concentrations may be valuable strategy to promote ADSC transplantation.'973' National ST Major Project [2011CB503900]; National Natural Science Foundation of China [81270321, 81170101, 81370235]; Natural Science Foundation of Beijing, China [7122106]SCI(E)[email protected]; [email protected]

    Enhanced Electrorheological Properties of Elastomers Containing TiO 2

    No full text

    Genome-wide analysis of acid tolerance genes of Enterococcus faecalis with RNA-seq and Tn-seq

    No full text
    Abstract Enterococcus faecalis, a formidable nosocomial and community-acquired opportunistic pathogen, can persist a wide range of extreme environments, including low pH and nutrient deficiency. Clarifying the survival mechanism of E. faecalis in low-pH conditions is the key to combating the infectious diseases caused by E. faecalis. In this study, we combined transcriptome profiling (RNA-seq) and transposon insertion sequencing (TIS) to comprehensively understand the genes that confer these features on E. faecalis. The metadata showed that genes whose products are involved in cation transportation and amino acid biosynthesis were predominantly differentially expressed under acid conditions. The products of genes such as opp1C and copY reduced the hydrion concentration in the cell, whereas those of gldA2, gnd2, ubiD, and ubiD2 mainly participated in amino metabolism, increasing matters to neutralize excess acid. These, together with the folE and hexB genes, which are involved in mismatch repair, form a network of E. faecalis genes necessary for its survival under acid conditions

    An Ultracompact Angular Displacement Sensor Based on the Talbot Effect of Optical Microgratings

    No full text
    Here, we report an ultracompact angular displacement sensor based on the Talbot effect of optical microgratings. Periodic Talbot interference patterns were obtained behind an upper optical grating. By putting another grating within the Talbot region, the total transmission of the two-grating structure was found to be approximatively in a linear relationship with the relative pitch angle between the two gratings, which was explained by a transversal shift of the Talbot interference patterns. The influence of the grating parameters (e.g., the grating period, the number of grating lines and the gap between the two gratings) was also studied in both a simulation and an experiment, showing a tunable sensitivity and range by simply changing the grating parameters. A sensitivity of 0.19 mV/arcsec was experimentally obtained, leading to a relative sensitivity of 0.27%/arcsec within a linear range of ±396 arcsec with the 2 μm-period optical gratings. Benefitting from tunable properties and an ultracompact structure, we believe that the proposed sensor shows great potential in applications such as aviation, navigation, robotics and manufacturing engineering
    corecore