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Abstract—Although existing grasp detection methods have
achieved encouraging performance under well-light conditions,
repetitive experiments have found that the detection performance
would deteriorate drastically under low-light conditions. Al-
though supplementary information can be provided by additional
sensors, such as depth camera, the sparse and weak visual
features still hinder the improvement of detection accuracy.
In order to address these, we propose a visual enhancement
guided grasp detection model (VERGNet) to improve the ro-
bustness of robotic grasping in low-light conditions. Firstly, a
simultaneous grasp detection and low-light feature enhancement
framework is designed, which integrates residual blocks with
coordinate attention to re-optimize grasping features. Then, the
unsupervised low-light feature enhancement strategy is adopted
to reduce the dependence on paired data as well as improve
the algorithmic robustness to low-light conditions. Extensive
experiments are finally conducted on two newly-constructed low-
light grasp datasets and the proposed method achieves 98.9%
and 91.2% detection accuracy respectively, which are superior
to comparative methods. Besides, the effectiveness in our method
has also been validated in real-world low-light imaging scenarios.

Index Terms—Robotic grasping, grasp detection, image en-
hancement, data-driven model

I. INTRODUCTION

AS information technology and artificial intelligence de-
velop, the role of robots is becoming increasingly im-

portant in the fields of industrial manufacturing [1], household
services [2], agricultural harvesting and space exploration [3].
Robotic grasping, as the most basic skill of robots, is one of
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Fig. 1. Comparison of detection results between GR-ConvNet and VERGNet
under low-light conditions. Left: grasp quality maps, right: grasp detection
results.

the most challenging techniques in robot operation. The robot
grasping process includes object localisation, grasp detection,
path planning and grasp execution, where grasp detection aims
to find the graspable part on object and is one of the key steps.
However, due to the unknown target morphology, complex
environmental interference, and mutual occlusion of multiple
objects, robotic grasp detection in real-world scenarios still
faces many serious challenges.

Currently, most existing grasp detection works [4], [5] are
usually conducted under well-light conditions, where the target
structure is distinguishable and the detail contrast is sharp.
When it comes to low-light conditions, the target’s visual fea-
tures are weak and tend to be easily confused with background,
making the effective extraction of grasping-specific features
difficult.

In order to increase the adaptability of grasp detection
under low-light condition, the existing methods can be roughly
divided into two aspects: 1) using supplementary data from
external sensors, e.g., infrared camera, depth camera and laser
radar. However, this strategy generally requires higher energy
consumption and more importantly, the provided imaging data
are deficient in revealing abundant texture information of
object, restricting the further improvement of grasp detection
performance. 2) using more powerfully deep neural networks
for image enhancement or domain adaptation methods for
knowledge transfer. However, some works [6] have shown that
simply boosting the visual quality of image does not always
benefit other vision tasks, and the performance of transferring
learned features between different domains is still restricted
[7].

In order to solve the problem of grasping detection un-
der low-light conditions, we propose a novel visual en-
hancement guided robotic grasping detection network under
low-light conditions, which contains residual modules based
on coordinate-attention and an unsupervised visual grasping
feature enhancement branch. The coordinate attention cap-



tures cross-channel information, direction-aware and position-
sensitive information, resulting in the more accurate extraction
of target’s position information, while the skip connections are
used to fuse multilevel features. In addition, the unsupervised
visual grasping feature enhancement method not only reduces
the model’s dependence on paired data, but also constrains
the extraction of grasping features, enabling the model to
learn more generic features. Extensive experiments show that
compared with direct extraction of grasping features on RGB-
D input, our method is able to achieve better performance in
terms of detection accuracy by introducing the low-light grasp
features enhancement sub-task. As illustrated in Fig. 1, the
quality map predicted by GR-ConvNet is scattered with low
confidence, leading to incorrect detection result. But for our
VERGNet, it could generate more concentrated and confident
quality map. To summarize, our main contributions are listed
below:

1) A simultaneous grasp detection and low-light enhance-
ment framework is proposed to guide the enhancement
and detection of grasping-specific features from single
visual perspective.

2) The features to be enhanced are learned with semantic
level constraints using an unsupervised manner, exclud-
ing the requirement of paired ”normal-low” light images.

3) Two low-light grasp detection datasets are constructed
from Cornell and Jacquard datasets, and the effective-
ness of the proposed method is verified both on built
datasets and real-world robotic grasping.

The rest of this work is summarized as follows. Section II
investigates the related works and Section III describes our
proposed method. We conduct the experiments and conclude
our work in Section IV and V.

II. RELATED WORK

A. Deep learning based grasp detection approaches

As deep learning has proved its effectiveness in diverse
vision tasks, it is also being introduced into the field of grasp
detection. In order to avoid the design of complex artificial
features, Lenz et al. [8] used deep learning for the first time
to solve the grasp detection problem. Redmon et al. [9] used
AlexNet [10] to predict grasping region parameters. However,
the accuracies of these methods were still relatively limited.
To further improve the accuracy of grasp detection, Chen et al.
[11] used grasp paths rather than orientated rectangles to rep-
resent grasp poses, which allows for a fairer assessment of the
graspability of predictive grasps. Kumra et al. [12] proposed a
pixel-level grasp detection model with the output of three heat
maps representing the width, angle and quality of the grasp.
Following the new pixel-wise grasp representation, a subset of
grasp detection methods [13], [14], [15], [16] were proposed to
focus on useful grasping features by adding various attention
modules. These methods have largely improved the accuracy
and speed of grasp detection.

It observes that the current approaches generally consider
the case of sufficient light, and when the imaging condition
becomes darker, their grasp detection performances tend to
decrease dramatically.

B. Low-light image enhancement

Low-light image enhancement is a significant research
direction of computer vision. In the past decades, various
methods had been introduced. Specifically, Chen et al. [17]
designed a Retinex-based low-light image enhancement model
(RetinexNet), which could estimate light and reflection si-
multaneously. In addition, Chen et al. also created a brand
new dataset (LOL dataset) with synthetic noise obtained by
changing the exposure time. Jiang et al. [18] proposed a
GAN-based low-light image enhancement method with the
advantage of eliminating the dependence of the model on
paired data. Wang et al. [19] presented a new progressive
Retinex framework based on the Retinex approach considering
decoupling, using mutual enhancement to perceive light and
noise in low-light images. Guo et al. [20] used a neural
network to fit a luminance mapping curve, and then generated
an enhanced image based on the curve and the original
image, while constraining the optimisation process using some
new loss functions during training. Besides, Liu et al. [21]
proposed a model consisting of a decomposition network and
an adjustment network based on Retinex theory, as well as
a self-supervised fine-tuning strategy to improve the visual
performance.

III. PROPOSED METHOD

Instead of the rectangular representation proposed by Jiang
et al. [22], we use the pixel-based grasping representation
proposed in [23], and one grasp p is defined as:

p = {x, y, θ, w, q} (1)

where (x, y) denotes the spatial coordinates of grasping point,
θ denotes the rotation angle of the grasping rectangle, w
is the opening width, and q represents the quality of the
grasping pose. Specifically, we denote the pixel-level grasping
configuration as P , which is defined as follows:

P = {W ,Φ,Q} ∈ RH×W×3 (2)

where W , Φ, and Q denote the three feature maps outputted
by the model, and each pixel in these images can be regarded
as the width, rotation angle, and grasp quality score of a grasp
rectangle candidate.

A. Grasp detection network architecture

We propose a Visual Enhancement guided Robotic Grasp
detection Network (VERGNet), aiming at improving the ac-
curacy of grasp detection models under low-light conditions.
The fundamental framework is shown in Fig. 2, which in-
cludes a feature extraction module, a grasp detection head
and a low-light grasp features enhancement head. The inputs
to the model are RGB image Ir ∈ RH×W×3 and depth
image Id ∈ RH×W×1, while the outputs are three images
{Φ,W ,Q} ∈ RH×W×3 respectively.



Fig. 2. Framework of the visual enhancement guided robotic proposed grasp detection network.

1) Feature extraction module: Firstly, the RGB image Ir
and depth image Id are spliced into the input model in
channel dimension and then the underlying features will be
sequentially extracted through three CBL modules MCBL

[24]. The CBL modules are defined as follows:

MCBL = {Conv2D,BatchNorm,ReLu} (3)

The process of extracting features is shown below:

Flow =MCBL (MCBL (MCBL [Ir, Id])) (4)

where Flow denotes the extracted underlying features.
2) Grasp detection head: The underlying features extracted

by the encoder are firstly passed into the residual module
MRES , and then sequentially into the two transposed con-
volution modules MTCBL. Finally, the number of channels
is changed to 4 by the convolution operation, and the final
outputs of the three images are the grasping quality map Q,
the grasping angle map Φ and the grasping width map W .
The specific operations are shown below:

{Φ,W ,Q} = Conv2D
(
M2
TCBL

(
M5
RES (Flow)

))
(5)

Regarding the residual module MRES , it contains three
CBL modules and one coordinate attention module MCAM

[25], whose fundamental structure is illustrated in Fig. 3.
Specifically, MCAM first extracts the spatial information by
averaging pooling along W and H directions. Then, feature
transformations are deployed to encode the spatial information
therein, followed by weighting them across channels in order
to achieve the final information fusion. The input features
Fin firstly enter two CBL modules MCBL sequentially and
then flow into the coordinate attention module MCAM . The
re-optimized features are summed up with skip connection,
followed by one additional MCBL to get the final output
features Fout. The specific process is shown below:

Fout =MCBL

(
MCAM

(
M2
CBL (Fin)

)
+ Fin

)
(6)

Fig. 3. Fundamental structure of the coordinate attention module MCAM .

Fig. 4. Grasping feature enhancement iteration results.

3) Low-light grasp features enhancement head: The under-
lying features Flow extracted by the encoder are sequentially
fed into the two transposed convolution modules MTCBL, and
then a convolution operation is performed to obtain the final
curve parameter map. The curve parameter map iteratively
enhances the given grasp features and the enhancement result
is used as the input for the next iteration, incrementally
enhancing the input grasp features. The process for each
iteration is expressed as follows:

Fn (x) = Fn−1 (x) +A (x)Fn−1 (x) (1−Fn−1 (x)) (7)

where A represents curve parameter map, Fi denotes the
features of ith iteration. The first iteration grasp feature is the
input low-light grasp feature and the number of iterations is 8.



The visualization results for each iteration are shown in Fig.
4. The detailed derivation is described in [20]. The specific
processes are shown below:

Ienhanced = T 8
(
Conv2D

(
M2
TCBL (Flow)

))
(8)

where Ienhaced denotes the enhanced grasp feature and T
denotes the iterative process.

B. Loss function
1) Grasp detection loss: Regarding the selection of the loss

function for grasp detection, we use the smooth L1 loss to
constrain the optimisation process, as defined below:

Lgrasp(P̂,P) =
N∑
i

∑
k

l1(P̂
k

i ,P
k
i ), k ∈ {Φ,W ,Q} (9)

where P̂ denotes the grasping prediction, P denotes the
corresponding label and N represents the number of grasp
candidates. L1 loss is defined as:

l1(P̂
k

i ,P
k
i ) =

0.5 · (P̂ki − Pki )
2,

∣∣∣P̂ki − Pki
∣∣∣ < 1∣∣∣P̂ki − Pki

∣∣∣− 0.5, otherwise
(10)

2) Unsupervised low-light grasp feature enhancement loss:
Specifically, multiple losses [26], including loss Lsc for en-
hancing the spatial consistency of the image, loss Lce for
controlling the exposure, loss Lccd for correcting colour devi-
ations and loss Lals for adjusting light smoothness, are used
to achieve the structural and perceptual evaluation of enhanced
grasp features. The definition of each loss is sequentially listed.

Lsc =
1

F

F∑
p=1

∑
q∈ω(p)

(|(Hp −Hq)| − |(Zp − Zq)|)2 (11)

where F denotes the number of square regions and ω(p) is the
four adjacent square regions centred on region p, as shown in
Fig. 5. We indicate H and Z as the average intensity values of
the square regions in the enhanced and input grasp features.

Lce =
1

C

C∑
e=1

|He − E| (12)

where C denotes the number of non-overlapping square re-
gions, E defines the average gray value of normal-light image.

Lccd =
∑

∀(i,j)∈q

(
Ai −Aj

)2
,q = {(R,G) , (R,B) , (G,B)}

(13)
where Ai and Aj are the average intensity value of channel i
and j in the enhanced grasp feature.

Lals =
1

M

M∑
m=1

∑
c∈η

(|5xAc|+ |5yAc|)2 , η = {R,G,B}

(14)
where M is the number of iterations and 5x and 5y denote
gradient operations. The loss of the visual enhancement branch
is defined as follows:

Lenhance = Lsc + αLce + βLccd + γLals (15)

where α, β and γ are set to 10, 5 and 1600, respectively.

Fig. 5. Schematic diagram about the loss of spatial consistency. Left: low-
light image, right: enhanced image.

3) Total loss: The total loss of the model consists of two
parts, the grasping detection loss Lgrasp and the low-light
grasp feature enhancement loss Lenhance, which is expressed
as:

Ltotal = λLgrasp + µLenhance (16)

where λ and µ are set to 1 and 0.9, respectively.

IV. EXPERIMENTS AND RESULTS

A. Low-light grasping datasets construction

To the best of our knowledge, there exists no grasp detection
dataset specifically sampled under low-light condition. In
order to simulate the low-light condition, we generate low-
light Cornell dataset and low-light Jacquard dataset (URL:
https://github.com/Sxudig/Low-light-grasp-dataset) based on
the existing Cornell [22] and Jacquard dataset [27] by con-
secutively adjusting the brightness of the image and adding
Gaussian noise. The complete procedure is demonstrated in
Fig. 6.

1) Adjust the brightness: The normal light image is defined
as I and the output low-light image is defined as Ilow. The
specific processing is shown below:

Ilow = Ig (17)

when g > 1, the resulting image is darker than original image,
and when g < 1, the resulting image is brighter. In our
experiments we set the values of g as 1.2, 1.5 and 1.8 to
simulate different light conditions.

2) Add Gaussian noise: Gaussian noise is a class of
noises whose probability density functions follow Gaussian
distribution, which commonly appears under low-light and
non-uniform illuminations. Hence, we add Gaussian noise
to the brightness-adjusted image in order to further simulate
the low-light imaging environment. The Gaussian probability
distribution is shown below:

p(z) =
1√
2πσ

e−(z−µ)
2/2σ2

(18)

where z denotes the gray value, µ and σ represent the expected
value and standard deviation of z, respectively. The level of
added noise can be controlled by adjusting µ and σ.

B. Implementation details

A single NVIDIA RTX 3090 GPU with 24G of memory
is used for model training and testing, and the entire model
implementation is based on PyTorch. In addition, the operating
system is Ubuntu 20.04.



Fig. 6. Procedure of constructing low-light grasp detection datasets.

1) Evaluation metric: The common rectangular metric pro-
posed by [22] is used. The predicted grasping rectangle is
considered correct when it satisfies both of the following
Eq.(19) and Eq.(20):∣∣∣ ˆAngle−Angle

∣∣∣ < 30◦ (19)

where ˆAngle denotes the predicted grasp angle and Angle
denotes the ground truth.

|P̂ ∩ P |/|P̂ ∪ P | > 0.25 (20)

where P̂ denotes the predicted grasp rectangle and the P
denotes the ground truth. Besides, |?| is the area of ?.

2) Training details: For low-light Cornell and Jacquard
dataset, 90% of the low-light images are used for training
while the remaining 10% are used for testing, respectively.
Besides, we set the initial learning rate to 0.001 and the pa-
rameters are optimised using the adaptive moment estimation
(Adam) method. The learning rate is sequentially adjusted
during training according to the cosine annealing strategy.

C. Quantitative and qualitative results

Quantitative and qualitative experiments are conducted to
compare comparative methods with our VERGNet on low-
light Cornell and Jacquard dataset, respectively. From the
results in Table I and II, our method achieves 98.9%, 98.3%,
and 97.7% accuracy on low-light Cornell datasets under
different luminance, which is 1.2%, 1.0%, and 0.7% higher
than GR-ConvNetV2, respectively. In addition, we achieve
91.2%, 90.6% and 90.2% accuracy on the low-light Jacquard
dataset, which is also a substantial improvement relative to
the other methods, further demonstrating the effectiveness
of our method. Regarding the inference speeds of different
approaches, VERGNet takes about 53ms per image, which
is relatively slower compared to other methods, but can
still basically satisfy the requirement of real-world robotic
grasping.

In addition to the quantitative results, we also visualize
the grasping poses predicted by different methods, as well
as the output maps of Φ, W , Q and the low-light grasp
feature enhancement results. As illustrated in Fig. 7 and Fig.
8, when the parameter g is taken as 1.5 and 1.8, VERGNet
predicts a higher confidence of the grasping quality relative

to GR-ConvNet. Meanwhile, it observes that the predicted
grasping quality maps by VERGNet are more complete and
concentrated. In addition, according to Fig. 8, when g is taken
as 1.5, the edges of the quality maps predicted by VERGNet
are clear, while that by GR-ConvNet are fuzzy, which sug-
gests that our model is more capable of distinguishing the
objects from backgrounds. Notice than since GR-ConvNet
lacks the specialized feature enhancement part, it can only
predict graspable rectangles, leading to missing images in the
corresponding positions of Fig. 7 and Fig. 8. Finally, we also
provide multi-grasp results to verify its generality to different
grasp locations of objects, as shown in Fig. 9.

TABLE I
DETECTION ACCURACY COMPARISON OF DIFFERENT METHODS ON

LOW-LIGHT CORNELL DATASET.

Author Algorithm
Accuracy (%) Speed

1.2 1.5 1.8 (ms)

Redmon et al. [9] AlexNet 72.3 68.3 63.1 76

Morrison et al. [23] GG-CNN2 87.6 83.1 80.9 20

Kumra et al. [12] GR-ConvNet 97.2 96.1 95.5 20

Kumra et al. [28] GR-ConvNetV2 97.7 97.3 96.9 20

Ours VERGNet 98.9 98.3 97.7 53

Fig. 7. Detection results comparison of different methods on low-light Cornell
dataset. Since there exists no feature enhancement function, the outputs by
GR-ConvNet are blank.

TABLE II
DETECTION ACCURACY COMPARISON OF DIFFERENT METHODS ON

LOW-LIGHT JACQUARD DATASET.

Author Algorithm
Accuracy (%)

1.2 1.5 1.8

Morrison et al. [23] GG-CNN2 78.1 77.5 76.8

Kumra et al. [12] GR-ConvNet 88.9 87.8 84.6

Kumra et al. [28] GR-ConvNetV2 89.6 87.4 85.7

Ours VERGNet 91.2 90.6 90.2

To verify whether our method can suppress false-positive
grasping, we further conduct experiments by setting Jaccard



Fig. 8. Detection results comparison of different methods on low-light
Jacquard dataset. Since there exists no feature enhancement function, the
outputs by GR-ConvNet are blank.

Fig. 9. Illustration of multiple grasp detection results. Left: images from
low-light Jacquard dataset, right: images from low-light Cornell dataset.

index to be 0.25, 0.3, 0.35 and angle different to be 30◦,
25◦, 20◦, respectively. The experimental results are shown in
Fig. 10, which indicates that the accuracy can reach 88.1%,
87.9% and 87.5% at different brightness when the Jaccard
index is 0.35, and 89.7%, 89.0% and 89.2% at different
brightness when the angle difference is 25◦. As Jaccard
index increases and angle difference decreases, the detection
accuracy decreases slightly, which to some extent proves that
our method can suppress false positive grasping. In addition,

Fig. 10. The experimental results of VERGNet for low-light Jacquard dataset
at different Jaccard indexes and angle differences.

Fig. 11. The experimental results of GR-ConvNet for low-light Jacquard
dataset at different Jaccard indexes and angle differences.

the experimental results of GR-ConvNet for low-light Jacquard
dataset at different Jaccard indexes and angle differences
are shown in Fig. 11. It reveals that under identical angle
difference and Jaccard index, the detection accuracy of GR-
ConvNet is inferior to that of VERGNet. Besides, as the light
condition becomes severer, VERGNet indicates a slighter de-
crease in detection accuracy relative to GR-ConvNet, verifying
its robustness and adaptability to light changes.

D. Ablation study

To verify the effectiveness of the low-light grasping feature
enhancement branch BFE , an ablation study is conducted in
this section. Specifically, the grasp detection models removing
BFE and RGB input are respectively trained, and the corre-
sponding detection accuracies are reported in Table III. When
the input is depth image, the accuracies of detection model
without BFE under Cornell and Jacquard dataset are 94.4%
and 88.9% respectively. When it comes to RGB-D inputs,
the accuracies increases to 97.7% and 89.2%, showing that
although the RGB image captured under low-light condition
is weak and indistinct in colour and texture, they are still
beneficial for the accuracy improvement of detection model.
After introducing BFE , our VERGNet achieves the best per-
formances of 98.3% and 90.6% detection accuracy. It proves
that the low-light grasping feature enhancement branch is
able to further highlight and extract grasping-specific features,
compensating the side effect of weak lighting environment.

TABLE III
RESULTS OF ABLATION EXPERIMENTS ON THE LOW-LIGHT CORNELL AND

JACQUARD DATASET.

Modality Baseline BFE
Accuracy (%)

Cornell Jacquard

Depth X 94.4 88.9

RGB-D X 97.7 89.2

RGB-D X X 98.3 90.6



E. Real-world robotic grasping

To verify the feasibility of our method in real scenarios, we
construct a low-light robotic grasping system, which consists
of the UR5 robotic arm, the Backyard E140 gripper, the
RealSense camera, the objects to be grasped, and the host
computer, see Fig. 12 for details. In addition, the shade cloth
is used to cover the external support frame of the system in
order to simulate the low-light imaging condition.

Fig. 12. The built low-light robotic grasping system and objects to be grasped.

Fig. 13. Single-object and multi-object grasp detection results in real-world
low-light environment.

Specifically, we select 20 common objects and sample 111
images in low-light scene. The sampled data are used to fine-
tune our VERGNet trained on low-light Cornell and Jacquard
datasets. Each object is grasped 10 times respectively, and the
average grasping success rate is finally calculated. Note that a
successful grasping of object means that the object does not
fall during the whole grasping process. Repetitive experiments
show that the average grasping success rate of our method
reaches 94.6%, while that of [12] is 87.4%. In Fig. 13, some
of the single-object and multi-object grasp detection results
under real-world low-light imaging environment are given, and
in Fig. 14, we show the typical procedures during low-light
robotic grasping.

V. CONCLUSION

In this work, we propose a grasping detection network for
low-light conditions. Specifically, a residual module that fuses
coordinate attention is first added to the network to make the
model more accurate in capturing the location information
of target. Then, we impose semantic-level constraints on
the extraction of grasping features by using unsupervised
visual enhancement methods, reducing the dependence on

Fig. 14. Visualization of real-world robotic grasping procedure. (a) Grasping
rectangle prediction results. (b) Grasping process.

paired data. Meanwhile, under the newly-constructed low-light
Cornell dataset and low-light Jacquard dataset, the proposed
VERGNet outperforms the comparative methods in terms of
detection accuracy, verifying the effectiveness of enhancing
visual features in low-light robotic grasping. Finally, we con-
struct a robotic grasping platform for low-light environments
to prove the effectiveness of our method.
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