12 research outputs found

    Pre-training of Equivariant Graph Matching Networks with Conformation Flexibility for Drug Binding

    Full text link
    The latest biological findings observe that the traditional motionless 'lock-and-key' theory is not generally applicable because the receptor and ligand are constantly moving. Nonetheless, remarkable changes in associated atomic sites and binding pose can provide vital information in understanding the process of drug binding. Based on this mechanism, molecular dynamics (MD) simulations were invented as a useful tool for investigating the dynamic properties of a molecular system. However, the computational expenditure limits the growth and application of protein trajectory-related studies, thus hindering the possibility of supervised learning. To tackle this obstacle, we present a novel spatial-temporal pre-training method based on the modified Equivariant Graph Matching Networks (EGMN), dubbed ProtMD, which has two specially designed self-supervised learning tasks: an atom-level prompt-based denoising generative task and a conformation-level snapshot ordering task to seize the flexibility information inside MD trajectories with very fine temporal resolutions. The ProtMD can grant the encoder network the capacity to capture the time-dependent geometric mobility of conformations along MD trajectories. Two downstream tasks are chosen, i.e., the binding affinity prediction and the ligand efficacy prediction, to verify the effectiveness of ProtMD through linear detection and task-specific fine-tuning. We observe a huge improvement from current state-of-the-art methods, with a decrease of 4.3% in RMSE for the binding affinity problem and an average increase of 13.8% in AUROC and AUPRC for the ligand efficacy problem. The results demonstrate valuable insight into a strong correlation between the magnitude of conformation's motion in the 3D space (i.e., flexibility) and the strength with which the ligand binds with its receptor

    Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans

    Get PDF
    Abstract: Machine learning methods offer great promise for fast and accurate detection and prognostication of coronavirus disease 2019 (COVID-19) from standard-of-care chest radiographs (CXR) and chest computed tomography (CT) images. Many articles have been published in 2020 describing new machine learning-based models for both of these tasks, but it is unclear which are of potential clinical utility. In this systematic review, we consider all published papers and preprints, for the period from 1 January 2020 to 3 October 2020, which describe new machine learning models for the diagnosis or prognosis of COVID-19 from CXR or CT images. All manuscripts uploaded to bioRxiv, medRxiv and arXiv along with all entries in EMBASE and MEDLINE in this timeframe are considered. Our search identified 2,212 studies, of which 415 were included after initial screening and, after quality screening, 62 studies were included in this systematic review. Our review finds that none of the models identified are of potential clinical use due to methodological flaws and/or underlying biases. This is a major weakness, given the urgency with which validated COVID-19 models are needed. To address this, we give many recommendations which, if followed, will solve these issues and lead to higher-quality model development and well-documented manuscripts

    A Smart Strategy for Photoresponsive Molecules: Utilizing Generative Pre-trained Transformer and TDDFT Calculations in Drug Delivery

    No full text
    Photoresponsive drug delivery stands as a pivotal frontier in smart drug administration, leveraging the non- invasive, stable, and finely tunable nature of light-triggered methodologies. The Generative Pre-trained Transformer (GPT) has been employed for generating molecular structures. In our study, we harnessed GPT-2 on the QM7b dataset to refine a UV- GPT model with adapters, enabling the generation of molecules responsive to UV light excitation. Utilizing the Coulomb matrix as a molecular descriptor, we predicted the excitation wavelengths of these molecules. Furthermore, we validated the excited state properties through Quantum chemical simulations. The synergy of these findings underscores the successful application of GPT technology in this critical domain

    A Novel Atom Pair Attention Methodology for Molecular Representation Learning

    No full text
    Rapid and accurate prediction of molecular properties is a fundamental task in drug discovery. In recent years, deep learning-based molecular property pre diction methods have received much attention and recent successes have shown that learning the representations of molecular structures by applying graph neural net works (GNNs) can achieve better prediction results. However, most previous ap proaches typically focus on learning atomic embedding, while in this paper, we pro pose a novel attention method based on atom pair embedding, and it was applied to two types of prediction task. Firstly, learning of atom pair embedding was done on 2D molecular graphs for predicting a series of ligand properties and secondly, the atom pair embedding was learned on ligand/protein 3D complex structures together with axial attention network to predict protein-ligand interaction. In MolecularNet bench mark datasets, our method achieved better performance than previous state-of-the-art models in ten property prediction tasks and in the task for protein-ligand interaction prediction, our method also obtained superior results on the PDB2016 dataset than a collection of reference models. Our source code will be publicly available upon the acceptance of the manuscript

    AI-Aided Design of Novel Targeted Covalent Inhibitors against SARS-CoV-2

    No full text
    The drug repurposing of known approved drugs (e.g., lopinavir/ritonavir) has failed to treat SARS-CoV-2-infected patients. Therefore, it is important to generate new chemical entities against this virus. As a critical enzyme in the lifecycle of the coronavirus, the 3C-like main protease (3CLpro or Mpro) is the most attractive target for antiviral drug design. Based on a recently solved structure (PDB ID: 6LU7), we developed a novel advanced deep Q-learning network with a fragment-based drug design (ADQN–FBDD) for generating potential lead compounds targeting SARS-CoV-2 3CLpro. We obtained a series of derivatives from the lead compounds based on our structure-based optimization policy (SBOP). All of the 47 lead compounds obtained directly with our AI model and related derivatives based on the SBOP are accessible in our molecular library. These compounds can be used as potential candidates by researchers to develop drugs against SARS-CoV-2

    Association of APOE ε4 genotype and lifestyle with cognitive function among Chinese adults aged 80 years and older: A cross-sectional study.

    No full text
    BackgroundApolipoprotein E (APOE) ε4 is the single most important genetic risk factor for cognitive impairment and Alzheimer disease (AD), while lifestyle factors such as smoking, drinking, diet, and physical activity also have impact on cognition. The goal of the study is to investigate whether the association between lifestyle and cognition varies by APOE genotype among the oldest old.Methods and findingsWe used the cross-sectional data including 6,160 oldest old (aged 80 years old or older) from the genetic substudy of the Chinese Longitudinal Healthy Longevity Survey (CLHLS) which is a national wide cohort study that began in 1998 with follow-up surveys every 2-3 years. Cognitive impairment was defined as a Mini-Mental State Examination (MMSE) score less than 18. Healthy lifestyle profile was classified into 3 groups by a composite measure including smoking, alcohol consumption, dietary pattern, physical activity, and body weight. APOE genotype was categorized as APOE ε4 carriers versus noncarriers. We examined the associations of cognitive impairment with lifestyle profile and APOE genotype using multivariable logistic regressions, controlling for age, sex, education, marital status, residence, disability, and numbers of chronic conditions. The mean age of our study sample was 90.1 (standard deviation [SD], 7.2) years (range 80-113); 57.6% were women, and 17.5% were APOE ε4 carriers. The mean MMSE score was 21.4 (SD: 9.2), and 25.0% had cognitive impairment. Compared with those with an unhealthy lifestyle, participants with intermediate and healthy lifestyle profiles were associated with 28% (95% confidence interval [CI]: 16%-38%, P ConclusionsIn this study, we observed that healthier lifestyle was associated with better cognitive function among the oldest old regardless of APOE genotype. Our findings may inform the cognitive outlook for those oldest old with high genetic risk of cognitive impairment

    The binding mechanism of failed, in processing and succeed inhibitors target SARS-CoV-2 main protease

    No full text
    Since the outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), several variants have caused a persistent pandemic. Consequently, it is crucial to develop new potential anti-SARS-CoV-2 drugs with specificity. To minimize potential failures and preserve valuable clinical resources for the development of other useful drugs, researchers must enhance their understanding of the interactions between drugs and SARS-CoV-2. While numerous crystal structures of the SARS-CoV-2 main protease (SCM) and its inhibitors have been reported, they provide only static snapshots and fail to capture the dynamic nature of SCM/inhibitor interactions. Herein, we conducted molecular dynamics simulations for five SCM complexes: ritonavir (SCM/RTV), lopinavir (SCM/LPV), the identified inhibitor N3 (SCM/N3), the approved inhibitor ensitrelvir (SCM/ESV), and the approved drug nirmatrelvir (SCM/NMV). Additionally, we explored the potential for covalent bond formation in the N3 and NMV inhibitors through QM/MM calculations using Umbrella sampling. The results show that the binding site is highly flexible to fit those five different inhibitors and each compound has its unique binding mode at the same binding site. Moreover, the binding affinities of positive and negative inhibitors to SCM exhibit significant differences. By gaining insights into the dynamics, we can potentially elucidate why lopinavir/ritonavir, initially considered promising, failed to effectively treat COVID-19. Furthermore, understanding the mechanistic aspects of N3 and NMV inhibition on SCM not only contributes to rational drug discovery against COVID-19 but also aids future studies on the catalytic mechanisms of main proteases in other novel coronaviruses. Communicated by Ramaswamy H. Sarma</p

    The NAD<sup>+</sup>-mitophagy axis in healthy longevity and in artificial intelligence-based clinical applications

    No full text
    Nicotinamide adenine dinucleotide (NAD+) is an important natural molecule involved in fundamental biological processes, including the TCA cycle, OXPHOS, β-oxidation, and is a co-factor for proteins promoting healthy longevity. NAD+ depletion is associated with the hallmarks of ageing and may contribute to a wide range of age-related diseases including metabolic disorders, cancer, and neurodegenerative diseases. One of the central pathways by which NAD+ promotes healthy ageing is through regulation of mitochondrial homeostasis via mitochondrial biogenesis and the clearance of damaged mitochondria via mitophagy. Here, we highlight the contribution of the NAD+-mitophagy axis to ageing and age-related diseases, and evaluate how boosting NAD+ levels may emerge as a promising therapeutic strategy to counter ageing as well as neurodegenerative diseases including Alzheimer’s disease. The potential use of artificial intelligence to understand the roles and molecular mechanisms of the NAD+-mitophagy axis in ageing is discussed, including possible applications in drug target identification and validation, compound screening and lead compound discovery, biomarker development, as well as efficacy and safety assessment. Advances in our understanding of the molecular and cellular roles of NAD+ in mitophagy will lead to novel approaches for facilitating healthy mitochondrial homoeostasis that may serve as a promising therapeutic strategy to counter ageing-associated pathologies and/or accelerated ageing
    corecore