4 research outputs found

    Research on Influences of Transient High IOP during LASIK on Retinal Functions and Ultrastructure

    Get PDF
    Objectives. To study the influences of transient high intraocular pressure(IOP) during LASIK on retinal functions and ultrastructure. Methods. Thirty-two New Zealand white rabbits were randomly divided into normal control, experimental control, negative suction 20 s and negative suction 3 min groups. The experimental control group was treated only by laser. Rabbit eyes received suction for different periods of time (20 s, 3 min) by negative pressure generator in different groups. The changes of neuro-optic and retinal ultrastructure were observed under electron and light microscopes; retinal neurofunctional changes were observed with flash-visual evoked potential (F-VEP) and flash-electroreinogram (F-ERG). Results. There was no obvious change in optic nerve, retina, ERG a-wave and b-wave in normal control and experimental control groups. There were slight changes in tissues of optic nerve and retina at various times of suction 20 s compared with control group, and a sharp change in suction 3 min group within 14d after operation, but these changes recovered at 28d . Amplitude of ERG b-wave observed at different time will decrease with suction periods prolonged. It can recover to normal level with the prolonged recovery periods. Amplitude and incubation period of ERG a-wave and VEP-P did not change significantly after different duration of suction. Conclusions. The transient high IOP during LASIK might have influence on retinal function and ultrastructure, but these changes were reversible

    Thermally enhanced photoluminescence and temperature sensing properties of Sc2_2W3_3O12_{12}:Eu3+^{3+} phosphors

    Full text link
    Currently,lanthanide ions doped luminescence materials applying as optical thermometers have arose much concern. Basing on the different responses of two emissions to temperature, the fluorescence intensity ratio (FIR) technique can be executed and further estimate the sensitivities to assess the optical thermometry performances. In this study, we introduce different doping concentrations of Eu3+^{3+} ions into negative expansion material Sc2_2W3_3O12_{12}:Eu3+^{3+}, accessing to the thermal enhanced luminescence from 373 to 548 K, and investigate the temperature sensing properties in detail. All samples exhibit good thermally enhanced luminescence behavior. The emission intensity of Sc2_2W3_3O12_{12}: 6 mol% Eu3+^{3+} phosphors reaches at 147.81% of initial intensity at 473 K. As the Eu doping concentration increases, the resistance of the samples to thermal quenching decreases. The FIR technique based on the transitions 5D0-7F1 (592 nm) and 5D0-7F2 (613 nm) of Eu3+^{3+} ions demonstrate a maximum relative temperature sensitivity of 3.063% K-1 at 298 K for Sc2_2W3_3O12_{12}:Eu3+^{3+}: 6 mol% Eu3+^{3+} phosphors. The sensitivity of sample decreases with the increase of Eu3+^{3+} concentration. Benefiting from the thermal enhanced luminescence performance and good temperature sensing properties, the Sc2_2W3_3O12_{12}:Eu3+^{3+}: Eu3+^{3+} phosphors can be applies as optical thermometers
    corecore