16 research outputs found

    Unraveling Enhanced Activity, Selectivity, and Coke Resistance of Pt–Ni Bimetallic Clusters in Dry Reforming

    Get PDF
    By introducing Pt atoms into the surface of reduced hydrotalcite (HT)-derived nickel (Ni/HT) catalysts by redox reaction, we synthesized an enhanced active and stable Ni-based catalyst for methane dry reforming reaction. The bimetallic Pt–Ni catalysts can simultaneously enhance the catalyst activity, increase the H2/CO ratio by suppressing reverse water–gas shift reaction, and enhance the stability by increasing the resistance to the carbon deposition during the reaction. Kinetic study showed that 1.0Pt–12Ni reduces the activation energy for CH4 dissociation and enhances the catalytic activity of the catalyst and lowers the energy barrier for CO2 activation and promotes the formation of surface O* by CO2 adsorptive dissociation. It is beneficial to enhance the resistance to the carbon deposition and prolong its service life in the reaction process. In addition, density-functional theory calculations rationalized the higher coke resistance of Pt–Ni catalysts where CH is more favorable to be oxidized instead of cracking into surface carbon on the Pt–Ni surface, compared with Ni(111) and Pt(111). Even if a small amount of carbon deposited on the Pt–Ni surface, its oxidation process requires a lower activation barrier. Thus, it demonstrates that the bimetallic Pt–Ni catalyst has the best ability to resist carbon deposition compared with monometallic samples.publishedVersio

    The Influence of Slight Protuberances in a Micro-Tube Reactor on Methane/Moist Air Catalytic Combustion

    No full text
    The combustion characteristics of methane/moist air in micro-tube reactors with different numbers and shapes of inner wall protuberances are investigated in this paper. The micro-reactor with one rectangular protuberance (six different sizes) was studied firstly, and it is shown that reactions near the protuberance are mainly controlled by diffusion, which has little effect on the outlet temperature and methane conversion rate. The formation of cavities and recirculation zones in the vicinity of protuberances leads to a significant increase of the Arrhenius reaction rate of CH4 and gas velocity. Next, among the six different simulated conditions (0–5 rectangular protuberances), the micro-tube reactor with five rectangular protuberances shows the highest methane conversion rate. Finally, the effect of protuberance shape on methane/moist air catalytic combustion is confirmed, and it is found that the protuberance shape has a greater influence on methane conversion rate than the number of protuberances. The methane conversion rate in the micro-tube decreases progressively in the following order: five triangular slight protuberances > five rectangular protuberances > five trapezoidal protuberances > smooth tube. In all tests of methane/moist air combustion conditions, the micro-tube with five triangular protuberances has the peak efficiency and is therefore recommended for high efficiency reactors

    Effect of oxide additives on the hydrotalcite derived Ni catalysts for CO2 reforming of methane

    Get PDF
    Here we provide new mechanistic and kinetic insights into the functions of oxides on Ni catalysts in methane dry reforming combining kinetic studies with density functional theory (DFT) calculations. Hydrotalcite derived Ni catalysts with a small amount of oxide additive (CeO2, ZrO2, ZnO) as promoters are synthesized and characterized by different techniques, X-ray diffraction (XRD), X-ray fluorescence (XRF), N2 physisorption, H2 chemisorption, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and thermogravimetric analysis combined with mass spectrometry (TGA-MS). Regarding H2/CO ratio, the CeO2-Ni shows the highest the values along all the temperatures. Moreover, the CeO2-Ni catalyst has the best stability among the four catalysts, while ZnO-Ni experiences the most severe deactivation. Kinetic studies in terms of reaction orders and activation energies are performed and compared to the DFT investigations, to assess the functions of oxide promoters. The CeO2-Ni catalyst shows the lowest apparent activation energy for CO2 activation, and it is also found that forward turnover rate is independent of CO2 partial pressure for all the samples. In DFT calculations, CO2 is more favorable to be activated on the support and the TOF obtained from G plot is in perfect agreement with our experiment value. In addition, it is also found that basicity of oxide additives and electronegativity of metal element can be well correlated to the activation of CO2 and catalyst’s deactivation. In general, both the increased basicity of oxide and the decreased electronegativity of metal element help to promote the CO2 activation and enhance the catalyst’s stability. We propose that the CeO2-Ni catalyst has best performance for CO2 activation, thus leading to a higher surface oxygen concentration to oxidize the carbon on the catalysts, which prolongs the catalyst’s life

    The Phenol–Ene Reaction: Biaryl Synthesis via Trapping Reactions between HDDA-Generated Benzynes and Phenolics

    No full text
    Benzynes produced thermally by the cycloisomerization of triyne-containing precursors [i.e., by the hexadehydro-Diels–Alder (HDDA) reaction] react with phenols at the carbon <i>ortho</i> to the hydroxyl in an enelike fashion. Following tautomerization of the intermediate cyclohexadienones, this produces biaryl derivatives. DFT calculations of model reactions support this mechanistic interpretation. Substituted, unsymmetrical phenols and bis-phenols react in a fashion that can be explained by engagement of the most readily available (non-hydrogen-bonded) hydroxyl in the phenol–ene process

    Understanding effects of Ni particle size on steam methane reforming activity by combined experimental and theoretical analysis

    No full text
    Fundamental understanding of the size-dependent activity is essential to harness powers of the nanocatalysts. Here we report an experimental and theoretical study of the Ni particle size effect on activity of steam methane reforming (SMR) to achieve a better understanding of the size dependence of kinetic behavior at an atomic level. A kinetic study illustrated the higher forward methane turnover frequency on the smaller sized Ni particles. The size-dependent activity was well reproduced by microkinetic modeling on a truncated octahedron model with the kinetic parameters estimated by the improved unity bond index-quadratic exponential potential (UBI-QEP) and the Brønsted–Evans–Polanyi (BEP) relationship. Microkinetic modeling suggested that the size-dependent activity of Ni catalysts is associated with the surface-dependent activity. Much higher activity of Ni(2 1 1) than Ni(1 1 1) and Ni(1 0 0) accompanied by decreased Ni(2 1 1) surface fraction results in reduced Ni activity as particle size increases. The activity of Ni(1 1 1) is limited by high free energy barriers, while that of Ni(1 0 0) is limited by site blockage by C* and CH*. This work offers a feasible approach to gain insight into size-dependent activity and to aid rational catalyst design for SMR in which preparing extremely small Ni particles (≤6 nm) might be a good strategy

    Unraveling Enhanced Activity, Selectivity, and Coke Resistance of Pt–Ni Bimetallic Clusters in Dry Reforming

    Get PDF
    By introducing Pt atoms into the surface of reduced hydrotalcite (HT)-derived nickel (Ni/HT) catalysts by redox reaction, we synthesized an enhanced active and stable Ni-based catalyst for methane dry reforming reaction. The bimetallic Pt–Ni catalysts can simultaneously enhance the catalyst activity, increase the H2/CO ratio by suppressing reverse water–gas shift reaction, and enhance the stability by increasing the resistance to the carbon deposition during the reaction. Kinetic study showed that 1.0Pt–12Ni reduces the activation energy for CH4 dissociation and enhances the catalytic activity of the catalyst and lowers the energy barrier for CO2 activation and promotes the formation of surface O* by CO2 adsorptive dissociation. It is beneficial to enhance the resistance to the carbon deposition and prolong its service life in the reaction process. In addition, density-functional theory calculations rationalized the higher coke resistance of Pt–Ni catalysts where CH is more favorable to be oxidized instead of cracking into surface carbon on the Pt–Ni surface, compared with Ni(111) and Pt(111). Even if a small amount of carbon deposited on the Pt–Ni surface, its oxidation process requires a lower activation barrier. Thus, it demonstrates that the bimetallic Pt–Ni catalyst has the best ability to resist carbon deposition compared with monometallic samples

    Unraveling Enhanced Activity, Selectivity, and Coke Resistance of Pt–Ni Bimetallic Clusters in Dry Reforming

    No full text
    By introducing Pt atoms into the surface of reduced hydrotalcite (HT)-derived nickel (Ni/HT) catalysts by redox reaction, we synthesized an enhanced active and stable Ni-based catalyst for methane dry reforming reaction. The bimetallic Pt–Ni catalysts can simultaneously enhance the catalyst activity, increase the H2/CO ratio by suppressing reverse water–gas shift reaction, and enhance the stability by increasing the resistance to the carbon deposition during the reaction. Kinetic study showed that 1.0Pt–12Ni reduces the activation energy for CH4 dissociation and enhances the catalytic activity of the catalyst and lowers the energy barrier for CO2 activation and promotes the formation of surface O* by CO2 adsorptive dissociation. It is beneficial to enhance the resistance to the carbon deposition and prolong its service life in the reaction process. In addition, density-functional theory calculations rationalized the higher coke resistance of Pt–Ni catalysts where CH is more favorable to be oxidized instead of cracking into surface carbon on the Pt–Ni surface, compared with Ni(111) and Pt(111). Even if a small amount of carbon deposited on the Pt–Ni surface, its oxidation process requires a lower activation barrier. Thus, it demonstrates that the bimetallic Pt–Ni catalyst has the best ability to resist carbon deposition compared with monometallic samples
    corecore