253 research outputs found

    High-rate aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity

    Get PDF
    Alloy-type anodes such as silicon and tin are gaining popularity in rechargeable Li-ion batteries, but their rate/cycling capabilities should be improved. Here by making yolk-shell nanocomposite of aluminium core (30 nm in diameter) and TiO[subscript 2] shell (~3 nm in thickness), with a tunable interspace, we achieve 10 C charge/discharge rate with reversible capacity exceeding 650 mAh g[superscript −1] after 500 cycles, with a 3 mg cm[superscript −2] loading. At 1 C, the capacity is approximately 1,200 mAh g[superscript −1] after 500 cycles. Our one-pot synthesis route is simple and industrially scalable. This result may reverse the lagging status of aluminium among high-theoretical-capacity anodes.National Science Foundation (U.S.) (Grant DMR-1120901)National Natural Science Foundation (China) (51221291)National Natural Science Foundation (China) (51172119

    Deletion of Glut1 in early postnatal cartilage reprograms chondrocytes toward enhanced glutamine oxidation

    Get PDF
    Abstract Glucose metabolism is fundamental for the functions of all tissues, including cartilage. Despite the emerging evidence related to glucose metabolism in the regulation of prenatal cartilage development, little is known about the role of glucose metabolism and its biochemical basis in postnatal cartilage growth and homeostasis. We show here that genetic deletion of the glucose transporter Glut1 in postnatal cartilage impairs cell proliferation and matrix production in growth plate (GPs) but paradoxically increases cartilage remnants in the metaphysis, resulting in shortening of long bones. On the other hand, articular cartilage (AC) with Glut1 deficiency presents diminished cellularity and loss of proteoglycans, which ultimately progress to cartilage fibrosis. Moreover, predisposition to Glut1 deficiency severely exacerbates injury-induced osteoarthritis. Regardless of the disparities in glucose metabolism between GP and AC chondrocytes under normal conditions, both types of chondrocytes demonstrate metabolic plasticity to enhance glutamine utilization and oxidation in the absence of glucose availability. However, uncontrolled glutamine flux causes collagen overmodification, thus affecting extracellular matrix remodeling in both cartilage compartments. These results uncover the pivotal and distinct roles of Glut1-mediated glucose metabolism in two of the postnatal cartilage compartments and link some cartilage abnormalities to altered glucose/glutamine metabolism

    Dissection of three quantitative trait loci for grain size on the long arm of chromosome 10 in rice (Oryza sativa L.)

    Get PDF
    Background Thousand grain weight is a key component of grain yield in rice, and a trait closely related to grain length (GL) and grain width (GW) that are important traits for grain quality. Causal genes for 16 quantitative trait loci (QTL) affecting these traits have been cloned, but more QTL remain to be characterized for establishing a genetic regulating network. A QTL controlling grain size in rice, qGS10, was previously mapped in the interval RM6100–RM228 on chromosome 10. This study aimed to delimitate this QTL to a more precise location. Method A total of 12 populations were used. The ZC9 population comprised 203 S1:2 families derived from a residual heterozygous (RH) plant in the F9 generation of the indica rice cross Teqing (TQ)/IRBB52, segregating the upper region of RM6100–RM228 and three more regions on chromosomes 1, 9, and 11. The Ti52-1 population comprised 171 S1 plants derived from one RH plant in F7 of TQ/IRBB52, segregating a single interval that was in the lower portion of RM6100–RM228. The other ten populations were all derived from Ti52-1, including five S1 populations with sequential segregating regions covering the target region and five near isogenic line (NIL) populations maintaining the same segregating pattern. QTL analysis for 1,000-grain weight, GL, and GW was performed using QTL IciMapping and SAS procedure GLM. Result Three QTL were separated in the original qGS10 region. The qGL10.1 was located in the upper region RM6704–RM3773, shown to affect GL only. The qGS10.1 was located within a 207.1-kb interval flanked by InDel markers Te20811 and Te21018, having a stable and relatively high effect on all the three traits analyzed. The qGS10.2 was located within a 1.2-Mb interval flanked by simple sequence repeat markers RM3123 and RM6673. This QTL also affected all the three traits but the effect was inconsistent across different experiments. QTL for grain size were also detected in all the other three segregating regions. Conclusion Three QTL for grain size that were tightly linked on the long arm of chromosome 10 of rice were separated using NIL populations with sequential segregating regions. One of them, qGS10.1, had a stable and relatively high effect on grain weight, GL, and GW, providing a good candidate for gene cloning. Another QTL, qGS10.2, had a significant effect on all the three traits but the effect was inconsistent across different experiments, providing an example of genotype-by-environmental interaction

    Impact of environmental comfort on urban vitality in small and medium-sized cities: A case study of Wuxi County in Chongqing, China

    Get PDF
    China's urbanization has exceeded 64% and a large number of small and medium-sized cities are the key development areas in the new stage. In urban planning, it is very important to reveal the influence of environmental comfort on urban vitality to improve the life quality of residents in these towns. Thus, the study investigated the impact of environmental comfort on urban vitality using ordinary least squares regression in Wuxi County. Environmental comfort was assessed through a comprehensive analysis of a built-up area and urban vitality was represented by vitality intensity. In addition, the influence pathways were identified and model validation was verified. The conclusions are as follows: (1) Environmental comfort and urban vitality are distributed spatially similarly, and both gradually decline from the center to the periphery. It is high in the east and low in the west, high in the south and low in the north. (2) Population density, POI mixing degree, building density, and road network density have significant positive effects on urban vitality. Population density has the greatest impact on urban vitality. Building height, building age, and river buffer have significant negative effects on urban vitality. (3) The impact of comprehensive environmental comfort on urban vitality is positive, and in terms of time, the order of impact is afternoon > morning > evening. Finally, a method for assessing the impact of environmental comfort on urban vitality was constructed, and the promoting effect of environmental comfort improvements on the vitality was verified. These findings will fill the gap between urban physical space and social needs in planning practices and provide reference to improve vitality for urban planning in small and medium-sized cities

    Increasing Nonsteroidal Anti-inflammatory Drugs and Reducing Opioids or Paracetamol in the Management of Acute Renal Colic: Based on Three-Stage Study Design of Network Meta-Analysis of Randomized Controlled Trials

    Get PDF
    Background: Currently, although non-steroidal anti-inflammatory drugs (NSAIDs) were recommended for acute renal colic in the 2018 European Association of Urology guidelines, there are no specific NSAIDs and no specific routes of administration in this guideline. The clinical practice of advocating intravenous opioids as the initial analgesia is still common out of the fear of adverse events from NSAIDs.Objectives: To comprehensively assess the efficacy and safety of NSAIDs, opioids, paracetamol, and combination therapy for acute renal colic.Methods: Ovid MEDLINE, Ovid EMbase, the Cochrane Library, Clinical Trials Registry Platform for Clinicaltrials.gov, and WHO International Clinical Trials Registry Platform were searched through February 2, 2018. Two reviewers selected all randomized controlled trails (RCTs) regarding NSAIDs, opioids, paracetamol, combination therapy, and placebo were identified for analysis. We designed a three-stage strategy based on classification and pharmacological mechanisms in the first stage, routes of administration in the second stage, and specific drug branches with different routes in the third stage using network meta-analysis. The pain variance at 30 min was seen as the primary outcome.Results: 65 RCTs with 8633 participants were involved. Comparing different classification and pharmacological mechanisms, combination therapy with more adverse events was more efficient than NSAIDs for the primary outcomes. Opioids gave rise to more nonspecific adverse events and vomiting events. NSAIDs were superior to opioids, paracetamol, and combination therapy after a full consideration of all outcomes. Comparing different routes of administration, NSAIDs with IV or IM route ranked first from efficacy and safety perspective. Comparing different specific drug branches with different routes, ibuprofen via IV route, ketorolac via IV route and diclofenac via IM route were superior for the management of acute renal colic. The results from diclofenac using IM route were more than those from ibuprofen used with IV route and ketorolac with IV route.Conclusions: In patients with adequate renal function, diclofenac via the IM route is recommended for patients without risks of cardiovascular events. Ibuprofen and ketorolac with IV route potentially superior to diclofenac via IM route remain to be investigated. Combination therapy is an alternative choice for uncontrolled pain after the use of NSAIDs

    Biobutanol production in a Clostridium acetobutylicum biofilm reactor integrated with simultaneous product recovery by adsorption

    Get PDF
    BACKGROUND: Clostridium acetobutylicum can propagate on fibrous matrices and form biofilms that have improved butanol tolerance and a high fermentation rate and can be repeatedly used. Previously, a novel macroporous resin, KA-I, was synthesized in our laboratory and was demonstrated to be a good adsorbent with high selectivity and capacity for butanol recovery from a model solution. Based on these results, we aimed to develop a process integrating a biofilm reactor with simultaneous product recovery using the KA-I resin to maximize the production efficiency of biobutanol. RESULTS: KA-I showed great affinity for butanol and butyrate and could selectively enhance acetoin production at the expense of acetone during the fermentation. The biofilm reactor exhibited high productivity with considerably low broth turbidity during repeated batch fermentations. By maintaining the butanol level above 6.5 g/L in the biofilm reactor, butyrate adsorption by the KA-I resin was effectively reduced. Co-adsorption of acetone by the resin improved the fermentation performance. By redox modulation with methyl viologen (MV), the butanol-acetone ratio and the total product yield increased. An equivalent solvent titer of 96.5 to 130.7 g/L was achieved with a productivity of 1.0 to 1.5 g · L(-1) · h(-1). The solvent concentration and productivity increased by 4 to 6-fold and 3 to 5-fold, respectively, compared to traditional batch fermentation using planktonic culture. CONCLUSIONS: Compared to the conventional process, the integrated process dramatically improved the productivity and reduced the energy consumption as well as water usage in biobutanol production. While genetic engineering focuses on strain improvement to enhance butanol production, process development can fully exploit the productivity of a strain and maximize the production efficiency

    Association between transferred embryos and multiple pregnancy/live birth rate in frozen embryo transfer cycles: A retrospective study

    Get PDF
    BackgroundPhysicians need an appropriate embryo transfer strategy to address the challenge of reducing multiple birth rates, while maintaining the couples’ live birth rate during assisted reproductive technology.MethodsWe included 10,060 frozen embryo transfer cycles from January 2015 to March 2020 in reproductive medical center of Ruijin hospital, Shanghai, China. Patients were grouped according to the number and grade of cleavage-stage embryo or blastocysts transferred. Live birth rate and multiple live birth rate were compared among groups of women of different ages. Multivariable logistic regression models were used to estimate the risk of multiple live birth using different combinations of transferred embryos.ResultsThe transfer of double good-quality embryos was an independent predictor for multiple birth in women aged <30 years and those aged 36−39 years [<30 years: aOR =1.54 (95% CI: 1.14−2.06, P < 0.01); 36−39 years: aOR =1.84 (95% CI: 1.0−3.4, P < 0.01)]. Further, for women aged <36 years, the transfer of good-quality + poor-quality blastocysts was an independent predictor for multiple birth rate [<30 years: aOR=2.46 (95% CI: 1.45−4.18, P < 0.01); 31−35 years: aOR =4.45 (95% CI: 1.97−10.06, P < 0.01)].ConclusionsSingle-good-quality blastocyst transfer is recommended for women of all ages. When good-quality cleavage embryos are available, the choice of single or double embryo transfer with good- or average-quality embryo should depend on the age of women. Double embryo transfer with the highest possible grade of embryos is recommended for women aged ≥40 years
    corecore