51 research outputs found

    Concise review : increasing the validity of cerebrovascular disease models and experimental methods for translational stem cell research

    Get PDF
    Interspecies differences, anatomical and physiological aspects, as wells as simplified study designs contribute to an overestimation of treatment effects and limit the transferability of experimental results into clinical applications. Confounders of cell therapies for cerebrovascular disorders (CVD) include common CVD comorbidities, frequent medications potentially affecting endogenous and transplanted stem cells, as well as age‐ and immune‐system–related effects. All those can contribute to a substantial modeling bias, ultimately limiting the prospective quality of preclinical research programs regarding the clinical value of a particular cell therapy. In this review, we discuss the nature and impact of most relevant confounders. We provide suggestions on how they can be considered to enhance the validity of CVD models in stem cell research. Acknowledging substantial and sometimes surprising effects of housing conditions, chronobiology, and intersex differences will further augment the translational value of animal models. We finally discuss options for the implementation of high‐quality functional and imaging readout protocols. Altogether, this might help to gain a more holistic picture about the therapeutic impact of a particular cell therapy for CVD, but also on potential side and off‐site effects of the intervention

    Reduced cingulate gyrus volume in Cavalier King Charles Spaniels with syringomyelia and neuropathic pain revealed by voxel-based morphometry: a pilot study

    Get PDF
    Objective: Pathomorphological alterations of the central nervous system in dogs, such as syringomyelia and Chiari-like malformation, can cause cranial and cervical hyperesthesia and neuropathic pain. The long-term activity of the pain network can induce functional alteration and eventually even morphological changes in the pain network. This may happen especially in the prefrontal and cingulate cortex, where atrophy of the gray matter (GM) was observed in humans with chronic pain, irrespective of the nature of the pain syndrome. We tested the hypothesis that Cavalier King Charles Spaniels (CKCS) with Chiari-like malformation and associated syringomyelia (SM) and pain show cerebral morphological differences compared to animals without signs of syringomyelia and pain. Methods: Volumetric datasets of 28 different brain structures were analyzed in a retrospective manner, including voxel-based morphometry, using magnetic resonance imaging data obtained from 41 dogs. Results: Volumetric analyses revealed a decrease in GM volumes in the cingulate gyrus (CG) in CKCS with SM and chronic pain when normalized to brain volume. This finding was supported by voxel-based morphometry, which showed a cluster of significance within the CG. Conclusion: GM atrophy in the CG is associated with chronic pain and thus may serve as an objective readout parameter for the diagnosis or treatment of canine pain syndromes

    Reduced cingulate gyrus volume in Cavalier King Charles Spaniels with syringomyelia and neuropathic pain revealed by voxel-based morphometry : a pilot study

    Get PDF
    Objective: Pathomorphological alterations of the central nervous system in dogs, such as syringomyelia and Chiari-like malformation, can cause cranial and cervical hyperesthesia and neuropathic pain. The long-term activity of the pain network can induce functional alteration and eventually even morphological changes in the pain network. This may happen especially in the prefrontal and cingulate cortex, where atrophy of the gray matter (GM) was observed in humans with chronic pain, irrespective of the nature of the pain syndrome. We tested the hypothesis that Cavalier King Charles Spaniels (CKCS) with Chiari-like malformation and associated syringomyelia (SM) and pain show cerebral morphological differences compared to animals without signs of syringomyelia and pain. Methods: Volumetric datasets of 28 different brain structures were analyzed in a retrospective manner, including voxel-based morphometry, using magnetic resonance imaging data obtained from 41 dogs. Results: Volumetric analyses revealed a decrease in GM volumes in the cingulate gyrus (CG) in CKCS with SM and chronic pain when normalized to brain volume. This finding was supported by voxel-based morphometry, which showed a cluster of significance within the CG. Conclusion: GM atrophy in the CG is associated with chronic pain and thus may serve as an objective readout parameter for the diagnosis or treatment of canine pain syndromes

    Hypothesis and theory : a pathophysiological concept of stroke-induced acute phase response and increased intestinal permeability leading to secondary brain damage

    Get PDF
    Gut integrity impairment leading to increased intestinal permeability (IP) is hypothesized to be a trigger of critically illness. Approximately 15–20% of human ischemic stroke (IS) victims require intensive care, including patients with impaired level of consciousness or a high risk for developing life-threatening cerebral edema. Local and systemic inflammatory reactions are a major component of the IS pathophysiology and can significantly aggravate brain tissue damage. Intracerebral inflammatory processes following IS have been well studied. Until now, less is known about systemic inflammatory responses and IS consequences apart from a frequently observed post-IS immunosuppression. Here, we provide a hypothesis of a crosstalk between systemic acute phase response (APR), IP and potential secondary brain damage during acute and subacute IS stages supported by preliminary experimental data. Alterations of the acute phase proteins (APPs) C-reactive protein and lipopolysaccharide-binding protein and serum level changes of antibodies directed against Escherichia coli-cell extract antigen (IgA-, IgM-, and IgG-anti-E. coli) were investigated at 1, 2, and 7 days following IS in ten male sheep. We found an increase of both APPs as well as a decrease of all anti-E. coli antibodies within 48 h following IS. This may indicate an early systemic APR and increased IP, and underlines the importance of the increasingly recognized gut-brain axis and of intestinal antigen release for systemic immune responses in acute and subacute stroke stages

    The Ovine Cerebral Venous System: Comparative Anatomy, Visualization, and Implications for Translational Research

    Get PDF
    Cerebrovascular diseases are significant causes of death and disability in humans. Improvements in diagnostic and therapeutic approaches strongly rely on adequate gyrencephalic, large animal models being demanded for translational research. Ovine stroke models may represent a promising approach but are currently limited by insufficient knowledge regarding the venous system of the cerebral angioarchitecture. The present study was intended to provide a comprehensive anatomical analysis of the intracranial venous system in sheep as a reliable basis for the interpretation of experimental results in such ovine models. We used corrosion casts as well as contrast-enhanced magnetic resonance venography to scrutinize blood drainage from the brain. This combined approach yielded detailed and, to some extent, novel findings. In particular, we provide evidence for chordae Willisii and lateral venous lacunae, and report on connections between the dorsal and ventral sinuses in this species. For the first time, we also describe venous confluences in the deep cerebral venous system and an ‘anterior condylar confluent’ as seen in humans. This report provides a detailed reference for the interpretation of venous diagnostic imaging findings in sheep, including an assessment of structure detectability by in vivo (imaging) versus ex vivo (corrosion cast) visualization methods. Moreover, it features a comprehensive interspecies-comparison of the venous cerebral angioarchitecture in man, rodents, canines and sheep as a relevant large animal model species, and describes possible implications for translational cerebrovascular research

    Damaged Neocortical Perineuronal Nets Due to Experimental Focal Cerebral Ischemia in Mice, Rats and Sheep

    Get PDF
    As part of the extracellular matrix (ECM), perineuronal nets (PNs) are polyanionic, chondroitin sulfate proteoglycan (CSPG)-rich coatings of certain neurons, known to be affected in various neural diseases. Although these structures are considered as important parts of the neurovascular unit (NVU), their role during evolution of acute ischemic stroke and subsequent tissue damage is poorly understood and only a few preclinical studies analyzed PNs after acute ischemic stroke. By employing three models of experimental focal cerebral ischemia, this study was focused on histopathological alterations of PNs and concomitant vascular, glial and neuronal changes according to the NVU concept. We analyzed brain tissues obtained 1 day after ischemia onset from: (a) mice after filament-based permanent middle cerebral artery occlusion (pMCAO); (b) rats subjected to thromboembolic MACO; and (c) sheep at 14 days after electrosurgically induced focal cerebral ischemia. Multiple fluorescence labeling was applied to explore simultaneous alterations of NVU and ECM. Serial mouse sections labeled with the net marker Wisteria floribunda agglutinin (WFA) displayed largely decomposed and nearly erased PNs in infarcted neocortical areas that were demarcated by up-regulated immunoreactivity for vascular collagen IV (Coll IV). Subsequent semi-quantitative analyses in mice confirmed significantly decreased WFA-staining along the ischemic border zone and a relative decrease in the directly ischemia-affected neocortex. Triple fluorescence labeling throughout the three animal models revealed up-regulated Coll IV and decomposed PNs accompanied by activated astroglia and altered immunoreactivity for parvalbumin, a calcium-binding protein in fast-firing GABAergic neurons which are predominantly surrounded by neocortical PNs. Furthermore, ischemic neocortical areas in rodents simultaneously displayed less intense staining of WFA, aggrecan, the net components neurocan, versican and the cartilage link protein (CRTL) as well as markers in net-bearing neurons such as the potassium channel subunit Kv3.1b and neuronal nuclei (NeuN). In summary, theconsistent observations based on three different stroke models confirmed that PNs are highly sensitive constituents of the NVU along with impaired associated GABAergic neurons. These results suggest that PNs could be promising targets of future stroke treatment, and further studies should address their reorganization and plasticity in both stabilizing the acute stroke as well as supportive effects during the chronic phase of stroke

    Regionally Altered Immunosignals of Surfactant Protein-G, Vascular and Non-Vascular Elements of the Neurovascular Unit after Experimental Focal Cerebral Ischemia in Mice, Rats, and Sheep

    Get PDF
    The surfactant protein-G (SP-G) has recently been discovered in the brain and linked to fluid balance regulations. Stroke is characterized by impaired vessel integrity, promoting water influx and edema formation. The neurovascular unit concept (NVU) has been generated to cover not only ischemic affections of neurons or vessels but also other regionally associated cells. This study provides the first spatio-temporal characterization of SP-G and NVU elements after experimental stroke. Immunofluorescence labeling was applied to explore SP-G, vascular and cellular markers in mice (4, 24, and 72 h of ischemia), rats (24 h of ischemia), and sheep (two weeks of ischemia). Extravasated albumin indicated vascular damage within ischemic areas. Quantifications revealed decreasing SP-G signals in the ischemia-affected neocortex and subcortex. Inverse immunosignals of SP-G and vascular elements existed throughout all models. Despite local associations between SP-G and the vasculature, a definite co-localization was not seen. Along with a decreased SP- G-immunoreactivity in ischemic areas, signals originating from neurons, glial elements, and the extracellular matrix exhibited morphological alterations or changed intensities. Collectively, this study revealed regional alterations of SP-G, vascular, and non-vascular NVU elements after ischemia, and may thus stimulate the discussion about the role of SP-G during stroke

    Coalescent angiogenesis—evidence for a novel concept of vascular network maturation

    Get PDF
    Angiogenesis describes the formation of new blood vessels from pre-existing vascular structures. While the most studied mode of angiogenesis is vascular sprouting, specific conditions or organs favor intussusception, i.e., the division or splitting of an existing vessel, as preferential mode of new vessel formation. In the present study, sustained (33-h) intravital microscopy of the vasculature in the chick chorioallantoic membrane (CAM) led to the hypothesis of a novel non-sprouting mode for vessel generation, which we termed "coalescent angiogenesis." In this process, preferential flow pathways evolve from isotropic capillary meshes enclosing tissue islands. These preferential flow pathways progressively enlarge by coalescence of capillaries and elimination of internal tissue pillars, in a process that is the reverse of intussusception. Concomitantly, less perfused segments regress. In this way, an initially mesh-like capillary network is remodeled into a tree structure, while conserving vascular wall components and maintaining blood flow. Coalescent angiogenesis, thus, describes the remodeling of an initial, hemodynamically inefficient mesh structure, into a hierarchical tree structure that provides efficient convective transport, allowing for the rapid expansion of the vasculature with maintained blood supply and function during development

    Impaired Neurofilament Integrity and Neuronal Morphology in Different Models of Focal Cerebral Ischemia and Human Stroke Tissue

    Get PDF
    As part of the neuronal cytoskeleton, neurofilaments are involved in maintaining cellular integrity. In the setting of ischemic stroke, the affection of the neurofilament network is considered to mediate the transition towards long-lasting tissue damage. Although peripheral levels of distinct neurofilament subunits are shown to correlate with the clinically observed severity of cerebral ischemia, neurofilaments have so far not been considered for neuroprotective approaches. Therefore, the present study systematically addresses ischemia-induced alterations of the neurofilament light (NF-L), medium (NF-M), and heavy (NF-H) subunits as well as of α-internexin (INA). For this purpose, we applied a multi-parametric approach including immunofluorescence labeling, western blotting, qRT-PCR and electron microscopy. Analyses comprised ischemia-affected tissue from three stroke models of middle cerebral artery occlusion (MCAO), including approaches of filament-based MCAO in mice, thromboembolic MCAO in rats, and electrosurgical MCAO in sheep, as well as human autoptic stroke tissue. As indicated by altered immunosignals, impairment of neurofilament subunits was consistently observed throughout the applied stroke models and in human tissue. Thereby, altered NF-L immunoreactivity was also found to reach penumbral areas, while protein analysis revealed consistent reductions for NF-L and INA in the ischemia-affected neocortex in mice. At the mRNA level, the ischemic neocortex and striatum exhibited reduced expressions of NF-L- and NF-H-associated genes, whereas an upregulation for Ina appeared in the striatum. Further, multiple fluorescence labeling of neurofilament proteins revealed spheroid and bead-like structural alterations in human and rodent tissue, correlating with a cellular edema and lost cytoskeletal order at the ultrastructural level. Thus, the consistent ischemia-induced affection of neurofilament subunits in animals and human tissue, as well as the involvement of potentially salvageable tissue qualify neurofilaments as promising targets for neuroprotective strategies. During ischemia formation, such approaches may focus on the maintenance of neurofilament integrity, and appear applicable as co-treatment to modern recanalizing strategies
    corecore