28 research outputs found

    Helipad detection for accurate UAV pose estimation by means of a visual sensor

    Get PDF
    In this article, we tackle the problem of developing a visual framework to allow the autonomous landing of an unmanned aerial vehicle onto a platform using a single camera. Specifically, we propose a vision-based helipad detection algorithm in order to estimate the attitude of a drone on which the camera is fastened with respect to target. Since the algorithm should be simple and quick, we implemented a method based on curvatures in order to detect the heliport marks, that is, the corners of character H. By knowing the size of H mark and the actual location of its corners, we are able to compute the homography matrix containing the relative pose information. The effectiveness of our methodology has been proven through controlled indoor and outdoor experiments. The outcomes have shown that the method provides high accuracies in estimating the distance and the orientation of camera with respect to visual target. Specifically, small errors lower than 1% and 4% have been achieved in the computing of measurements, respectively

    Soccer Ball Detection by Comparing Different Feature Extraction Methodologies

    Get PDF
    This paper presents a comparison of different feature extraction methods for automatically recognizing soccer ball patterns through a probabilistic analysis. It contributes to investigate different well-known feature extraction approaches applied in a soccer environment, in order to measure robustness accuracy and detection performances. This work, evaluating different methodologies, permits to select the one which achieves best performances in terms of detection rate and CPU processing time. The effectiveness of the different methodologies is demonstrated by a huge number of experiments on real ball examples under challenging conditions

    A Modified Iterative Closest Point Algorithm for 3D Point Cloud Registration

    Get PDF
    In this article, an accurate method for the registration of point clouds returned by a 3D rangefinder is presented. The method modifies the well-known iterative closest point (ICP) algorithm by introducing the concept of deletion mask. This term is defined starting from virtual scans of the reconstructed surfaces and using inconsistencies between measurements. In this way, spatial regions of implicit ambiguities, due to edge effects or systematical errors of the rangefinder, are automatically found. Several experiments are performed to compare the proposed method with three ICP variants. Results prove the capability of deletion masks to aid the point cloud registration, lowering the errors of the other ICP variants, regardless the presence of artifacts caused by small changes of the sensor view-point and changes of the environment

    A technology platform for automatic high-level tennis game analysis

    Get PDF
    Sports video research is a popular topic that has been applied to many prominent sports for a large spectrum of applications. In this paper we introduce a technology platform which has been developed for the tennis context, able to extract action sequences and provide support to coaches for players performance analysis during training and official matches. The system consists of an hardware architecture, devised to acquire data in the tennis context and for the specific domain requirements, and a number of processing modules which are able to track both the ball and the players, to extract semantic information from their interactions and automatically annotate video sequences. The aim of this paper is to demonstrate that the proposed combination of hardware and software modules is able to extract 3D ball trajectories robust enough to evaluate ball changes of direction recognizing serves, strokes and bounces. Starting from these information, a finite state machine based decision process can be employed to evaluate the score of each action of the game. The entire platform has been tested in real experiments during both training sessions and matches, and results show that automatic annotation of key events along with 3D positions and scores can be used to support coaches in the extraction of valuable information about players intentions and behaviours

    Understanding Factors Associated With Psychomotor Subtypes of Delirium in Older Inpatients With Dementia

    Get PDF

    A Systematic Review of Effective Hardware and Software Factors Affecting High-Throughput Plant Phenotyping

    No full text
    Plant phenotyping studies the complex characteristics of plants, with the aim of evaluating and assessing their condition and finding better exemplars. Recently, a new branch emerged in the phenotyping field, namely, high-throughput phenotyping (HTP). Specifically, HTP exploits modern data sampling techniques to gather a high amount of data that can be used to improve the effectiveness of phenotyping. Hence, HTP combines the knowledge derived from the phenotyping domain with computer science, engineering, and data analysis techniques. In this scenario, machine learning (ML) and deep learning (DL) algorithms have been successfully integrated with noninvasive imaging techniques, playing a key role in automation, standardization, and quantitative data analysis. This study aims to systematically review two main areas of interest for HTP: hardware and software. For each of these areas, two influential factors were identified: for hardware, platforms and sensing equipment were analyzed; for software, the focus was on algorithms and new trends. The study was conducted following the PRISMA protocol, which allowed the refinement of the research on a wide selection of papers by extracting a meaningful dataset of 32 articles of interest. The analysis highlighted the diffusion of ground platforms, which were used in about 47% of reviewed methods, and RGB sensors, mainly due to their competitive costs, high compatibility, and versatility. Furthermore, DL-based algorithms accounted for the larger share (about 69%) of reviewed approaches, mainly due to their effectiveness and the focus posed by the scientific community over the last few years. Future research will focus on improving DL models to better handle hardware-generated data. The final aim is to create integrated, user-friendly, and scalable tools that can be directly deployed and used on the field to improve the overall crop yield

    Vision-based omnidirectional indoor robots for autonomous navigation and localization in manufacturing industry

    No full text
    In this paper, we present a new generation of omnidirectional automated guided vehicles (omniagv) used for transporting materials within a manufacturing factory with the ability to navigate autonomously and intelligently by interacting with the environment, including people and other entities. This robot has to be integrated into the operating environment without significant changes to the current facilities or heavy redefinitions of the logistics processes already running. For this purpose, different vision-based systems and advanced methods in mobile and cognitive robotics are developed and integrated. In this context, vision and perception are key factors. Different developed modules are in charge of supporting the robot during its navigation in the environment. Specifically, the localization module provides information about the robot pose by using visual odometry and wheel odometry systems. The obstacle avoidance module can detect obstacles and recognize some object classes for adaptive navigation. Finally, the tag detection module aids the robot during the picking phase of carts and provides information for global localization. The smart integration of vision and perception is paramount for effectively using the robot in the industrial context. Extensive qualitative and quantitative results prove the capability and effectiveness of the proposed AGV to navigate in the considered industrial environment

    A Powerline-Tuned Camera Trigger for AC Illumination Flickering Reduction

    No full text
    corecore