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Abstract: In this article, an accurate method for the reg-
istration of point clouds returned by a 3D rangefinder
is presented. The method modifies the well-known iter-
ative closest point (ICP) algorithm by introducing the
concept of deletion mask. This term is defined starting
from virtual scans of the reconstructed surfaces and us-
ing inconsistencies between measurements. In this way,
spatial regions of implicit ambiguities, due to edge ef-
fects or systematical errors of the rangefinder, are auto-
matically found. Several experiments are performed to
compare the proposed method with three ICP variants.
Results prove the capability of deletion masks to aid the
point cloud registration, lowering the errors of the other
ICP variants, regardless the presence of artifacts caused
by small changes of the sensor view-point and changes of
the environment.

1 INTRODUCTION

The research on the use of laser scanners as a tool
to produce 3D point clouds of complex scenes for
structural engineering applications has received a great
impulse thanks to the continuous improving of laser
scanning technology. 3D geometric models from build-
ing, terrains, and infrastructure systems, can be used
for preventing geological hazards, such as landslides,
debris-flows, rockfalls, and floods (Jaboyedoff et al.,
2007; Deshpande, 2013). At the same time, the high
accuracy of measurements achievable with 3D models
permits the reliable check of the conditions of existing
buildings and roads (Cai and Rasdorf, 2007; Park et al.,
2007; Cord and Chambon, 2012; Nishikawa et al., 2012;
Zhang and Elaksher, 2012; Moreno et al., 2013; Truong-
Hong et al, 2013; Walsh et al., 2013; Park et al., 2015).
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In the context of infrastructures monitoring, registra-
tion of point clouds is a crucial preliminary step to com-
pare data acquired at different epochs and to document
changes and geometric deformations of the observed
surfaces. The capability of the processing methods to
detect variations is strictly dependent on the registra-
tion process which has to transform all acquired point
clouds to a common coordinates system. In this arti-
cle, we address the problem, crucial for infrastructures
monitoring, of developing a point cloud registration ap-
proach which improves the accuracy of 3D data align-
ments when reliable results are required.

1.1 Related works

Point cloud registration refers to two categories of prob-
lems: the precise localization of navigation systems dur-
ing the acquisition of the dense 3D models of targets
and the exact matching of data sets acquired at differ-
ent epochs for structural monitoring.

The registration of laser scans for the creation of
dense 3D models can be increasingly performed by
matching the newest scan over the acquired ones while
the surroundings are sensed. In this context, the lit-
erature on 3D scene recovery is mainly related to
trajectory-based methods. Among these methods for
laser scan matching, those based on Self Localization
And Mapping (SLAM) are the most used (Diosi and
Kleeman, 2005; Holz and Behnke, 2010; Rowekamper
et al., 2012). They can produce dense 3D models in real
time by updating an even more detailed map of the
scene together with the information on the sensor posi-
tion. As an example, a more sophisticated method (Holz
and Behnke, 2014) exploits the knowledge on the topol-
ogy of the scene to simultaneously update both the 3D
map and the sensor pose by means of approximate sur-
face reconstructions.

On the other hand, point cloud registration for struc-
tural monitoring is aimed to align different data sets,
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even acquired with SLAM methods, to achieve mean-
ingful comparisons on a common reference system.
These approaches can be classified as follows (Pfeifer
and Böhm, 2008): marker-based, sensor-based, and
data-driven registration methods.

Marker-based registrations can be very precise but
require that artificial control points, with an easy-to-
recognize pattern, are placed in the scene (Kang et al.
2012; Han et al., 2013; Scaioni et al., 2014).

In the sensor-based category (Grinstead et al., 2006;
Cazzaniga et al., 2007), the position and orientation of
the scanner is determined by GPS and an Integrated
Measurement Unit (IMU), limiting the application of
these methods to outdoor contexts, where the lines of
sight to the GPS satellites are not occluded.

Data-driven approaches use the point clouds prop-
erties to find the registration parameters. A widely
used algorithm belonging to this category is the ICP
(Iterative Closest Point), originally introduced in Chen
and Medioni (1991) and Besl and McKay (1992). Given
two clouds of points (a reference and a source), the
algorithm finds 3D correspondences between the point
clouds and tries to determine the translation and rota-
tion matrices whose application to the source can lead
to the best match on the reference in terms of minimum
distance. Although the method is simple and easy to
implement, a drawback resides in the need of a user
control for the validation of results, because it often
reaches a wrong convergence. Specifically, an erroneous
point correspondence between the source and the ref-
erence can increase the value of the distance function
under optimization, even if the models are overlapping.

Many techniques have been presented to overcome
this problem, such as: using the calibration equation of
the sensor (Blais and Levine, 1995); weighting the input
surface depth data for the integration of the views in a
continuous surface (Dorai et al., 1996); including color
information, if available, or more generally intensities,
in the comparison of the data sets (Johnson and Sing
Bing Kang, 1997; Arka, 2005; Gomez-Garcı́a-Bermejo
and Zalama, 2013); extracting invariant features for the
selection of points (Sharp et al., 2002); applying geomet-
rical constraints on the point collinearity and closeness
(Liu, 2004); employing a global consistency measure to
detect incorrect, but locally consistent matches (Huber
and Hebert, 2003); using general-purpose nonlinear op-
timization, such the Levenberg–Marquardt algorithm
(Fitzgibbon, 2003). At the same time many speeded-up
variants of this method have been also presented
(Rusinkiewicz and Levoy, 2001), including the approx-
imation of the nonlinear optimization problem with a
linear least-squares one (Low, 2004) and an efficient
evaluation of the meaningful points (Xin and Pu, 2010).
All these techniques can be also used in the case of

registration of scans which are individually subjected to
local deformations (Hähnel et al., 2003).

1.2 Our contributions

In this article, we propose a modified ICP algorithm
for the registration of data sets acquired at different
epochs for structural monitoring. The proposed ap-
proach belongs to the data-driven category, i.e., it uses
information within point clouds, without artificial mark-
ers or GPS/inertial information. As a matter of fact,
computer-aided methods that do not use markers can
speed up registrations, because the time spent for struc-
turing the environment is no longer required. Further-
more, in this way alignments of point clouds are al-
ways enabled, also when the environments cannot be
structured or the GPS information is not available (e.g.,
indoor scenes).

The underlying idea comes from the observation of
some limitations common to many ICP approaches.
First of all, most of them neglect the properties of the
acquisition and the environment under investigation. In
fact, when laser rangefinders are used, the mechanisms
of ray projection can induce the presence of different
shades when objects are observed from altered points of
view. As an example, pillars and columns, typical of civil
infrastructures (buildings, road and underground infras-
tructures, such as covered parking, metro tunnels, etc.)
can introduce implicit artifacts in the measurements and
hence errors in the registration process. In Figure 1, two
3D models of the same environment acquired from dif-
ferent points of view are shown: the red points represent
the differences, due to the change of the view-point,
which cannot be matched in the registration process.
Furthermore, when point clouds are acquired at dif-
ferent epochs for structural monitoring, the inspected
scene can experience changes (object shifts, plane rota-
tions, etc.) with respect to the reference point cloud. If
both implicit artifacts and actual changes are neglected,
and all the points are considered in the registration
process, wrong registration parameters can be obtained.

These critical aspects are the main topic of the
proposed paper, which modifies the standard ICP
implementation by introducing deletion masks, i.e.,
binary weighting matrices made of 0’s and 1’s. This
strategy is able to remove the measurement artifacts
due to the changes of the sensor point of view, reaching
higher robustness against the possible environmental
changes between the two different acquisitions. Dele-
tion masks are defined at each iteration as a function
of the estimated sensor positions and are applied
before the evaluation of the distance between the
source and reference point clouds. The aim of this
mask is the deletion of pairwise comparisons altered as
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Fig. 1. Comparison of two 3D models of the same
environment. Red dots are implicit differences due to the
change of the sensor point of view. (a) Reference and (b)
source point clouds (see color figure in online version).

effect of estimated changes of the sensor point of view.
Experimental evidence demonstrates that the proposed
method can improve the accuracy of the standard ICP
method and its variants, also in presence of alterations
of the environments under inspection.

The article is organized as follows: Section 2 shows
the algorithm in detail, introducing the bases for the
formulation of deletion masks; Section 3 describes the
experiments and compares the results of the proposed
method with those given by the other ICP variants; con-
clusions and final remarks are shown in Section 4. At
the end of the article, the Appendix reports the detailed
analytical formulation of virtual measurements.

2 METHODOLOGY

Whenever the processing of 3D models is aimed to
monitoring infrastructures, high accuracy and high
resolution are necessary. Laser rangefinders are the
best sensors to achieve this goal because they can reach
and measure hardly-positioned structures in narrow

Fig. 2. Example of point clouds derived from (a) a generic
indoor environment and (b) a covered parking area The
arrows represent the directions followed by the mobile

vehicle which carries the sensor through the environment
under analysis.

spaces, without any difficulty and regardless of the
lighting conditions. Typically, laser rangefinders are
bracketed on mobile vehicles, which proceed through
the environment, and collect distance measurements ρ

as a function of the vehicle position. As a result, the po-
sition in space of the samples gives a representation of
the acquired targets, namely of their external surfaces.
Two examples of point clouds acquired in indoor envi-
ronments are reported in Figure 2. In particular, Figure
2a represents a generic entrance hall, whereas Figure
2b models a covered parking area. These environments
will be the specific case studies for the presented algo-
rithm of point cloud registration. The arrows in Figure
2 display the directions followed by the mobile vehicle
during the acquisitions. At this stage, it is important to
notice that the method, and its underlying ideas, can
be applied to any data set produced by a generic laser
scanner. Nevertheless, for the sake of simplicity, the
following treatments will refer to the specific case of
a moving sensor which collects samples as the vehicle
moves through the environment.

The following subsections will describe the best
processing for the alignment of two or more data sets
modelling the same environment, i.e., an indoor infras-
tructure. The presented method can find application for
any kind of measurement scheme aiming at the envi-
ronmental modeling. Attention will be focused on the
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reduction of the size of the point clouds, together with
the description of the main limits of the existing algo-
rithms. Then, the method will be explained in detail,
pointing out the most important features that will carry
to the improvement of the results.

2.1 Preprocessing steps

The first step in the processing of point clouds aims
to simplify the data sets, which is often mandatory
to derive lighter data sets, full of information that
can be easily treated by the algorithms. Well-known
techniques and methods are often used to extrapolate
the meaningful parts of the data sets and to simplify
them without any loss of information (Moenning and
Dodgson, 2004; Song and Feng, 2009; Whelan et al.,
2015). This phase can be summarized in the following
steps: outlier removal, reduction of useless samples and
surface analysis.

Typically, secondary reflections or high-absorbing
targets can lead to noisy measurements. As a conse-
quence, many points acquired by the range sensor are
outliers which can be removed exploiting the data set
statistics (Rusu et al., 2008). As the point clouds are
dense of samples, a point is an outlier when it belongs to
a low-density region. In practice, a sphere is centered on
the investigated point to compare the number of sam-
ples within this region with the expected one. In a more
efficient way, the acquired samples are clustered follow-
ing a distance criterion and then processed to find iso-
lated points, i.e., those points, or sets of points, which
have a small number of neighbors, lower than a thresh-
old Sth. This processing is general and can be applied
regardless the kind of scene under analysis. Its effectiv-
ity only depends on the properties of the point cloud
produced by the sensor: size, resolution and accuracy,
which implicitly define the threshold parameters. For in-
stance, laser rangefinders able to produce tens of sam-
ples of a surface of 1 cm2 at 1 m of distance, can return
dense point clouds. In this case, setting the radius of the
sphere to 1 cm and the threshold Sth = 5 can ensure the
removal of the only outliers due to measurement errors.

As the method is defined for processing indoor data
sets, it is possible to design smart filters, able to ex-
ploit this domain knowledge for the removal of those
samples that do not add significant information to the
model. This result can be achieved by extending the
principles of the Split and Merge algorithm (also known
as Ramer–Douglas–Peucker algorithm, RDP [Ramer,
1972]) to the input data set. In more detail, the range
values belonging to an ordered vector of indices gen-
erate a curve which is decomposed in a set of line seg-
ments, whose edges define a subset of the exact samples.
The simplified curve is derived by deleting the points
that have a distance from the corresponding line seg-

Fig. 3. RDP results on a pseudo-random array of range
values. The tolerance value is constant and equal to: (a)

RDPtol = 0.5, (b) RDPtol = 1, and (c) RDPtol = 2.

ment lower than a tolerance value, named as RDPtol.
Some results, obtained by changing the tolerance value,
are shown in Figure 3. The method operates search-
ing for the most informative points and deleting the
ones which are unnecessary. In this way, range sets ex-
tracted from indoor transport infrastructures, which are
of interest in this framework, are approximated by line
segments with low residuals. This representation is the
most suitable for the processing of the specific envi-
ronments, because scenes are usually made of planes.
Finally, it is important to observe that the tolerance
RDPtol can be chosen proportional to the range mea-
surement, because many sensors produce results with
different resolutions, depending on the distance of the
target.

As a final step in the model creation, information
about the point position in space are merged with sur-
face data (Horn, 1979). The task of surface reconstruc-
tion from 3D range data has been deeply developed
and many algorithms have been already proposed.
Among them, the most important are the Ball Pivoting
Algorithm (Bernardini et al., 1999), the Powercrust
(Amenta et al., 2001), the Poisson Surface Reconstruc-
tion (Kazhdan et al., 2006; Kazhdan and Hoppe, 2013),
and the Multi-level Partition of Unity Implicits (MPU)
(Ohtake et al., 2003). When the point cloud is ordered,
this goal can be achieved easily. Whenever each range
value ρ that belongs to the ith point cloud Pi (i identifies
the acquisition) is obtained at specific discrete indices, a
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Fig. 4. Example of the process of hole generation due to the
simplification of the point cloud (see color figure in online
version). (a) Starting mesh; (b) hole formation due to the
simplification of the green dot in (a); (c) final result of the

surface reconstruction.

surface mesh Si, made of triangular patches, is directly
created by linking consecutive indices (points become
vertices of the triangles of the mesh). It is clear that the
preliminary simplification produces holes in the map
of range values given by the sensor. In this context,
Figure 4 reports an example of the generation of
holes in the triangular mesh. When the green dot in
Figure 4a is deleted by the previous simplification, the
reconstruction of the triangular patches fails because
the theoretical correspondence of adjacent indices is no
longer valid. These issues are overcome by connecting
vertices whose indices satisfy a criterion of minimum
distance, instead of connecting vertices which are close
in space, thus reaching the final result in Figure 4c.
In this way, the construction of wrong patches made
of edges that actually belong to different surfaces is
avoided.

Once the set of ordered connections defined by the
surface mesh is defined, it is used to create point normal
vectors, which are defined as the average value among
all the normal vectors of the triangular patches that in-
clude the specific point. Each sample is further com-
pared with the closest ones in terms of normals and it
is deleted from the data set if all surroundings have the
same properties.

2.2 ICP and its drawbacks

The task of registration of clouds of points is mostly per-
formed applying the ICP algorithm (Chen and Medioni,
1991; Besl and McKay, 1992). A simplified scheme
of the standard ICP algorithm is summarized in the
flowchart in Figure 5.

Starting from its first formulation, the method con-
siders two point clouds, a reference P0 and a source
P1, each one constituted by a set (vector) of distance
measurements ρ0 and ρ1, respectively. The ICP tries to
establish the transformation parameters which carry to
the best matching of the overlapping regions, solving an
optimization problem in the least squares sense. In sum-
mary, the point clouds are first subsampled uniformly or

Input data: 
P0, P1

Cost es�ma�on

Transforma�on by the trial ma-
trices (Rt, Tt)

Is the cost 
minimum? 

Output:
(R0, T0) = 

(Rt, Tt)

T

F

Fig. 5. Flowchart of the standard ICP implementation.

trying to extrapolate the most significant points (discon-
tinuities). Then, the ICP algorithm establishes � point
correspondences between the two data sets and trans-
forms the source point cloud, following the rotation R
and translation T guess matrices. Then it directly com-
putes the cost in terms of sum of squared differences be-
tween the � range values of the matched samples. The
cost function is defined as follows:

C (R, T) =
�∑

j=1

(ρ0, j − ρ1, j (R, T))2 (1)

where ρ1,j(R,T) are the range values extracted from the
source P1, after the transformation defined by the guess
matrices (R,T). The cost is thus optimized as a function
of the trial matrices, which are full of entries. As a con-
sequence, the alteration of the point of view can be com-
pensated exploiting six degrees of freedom.

Further ICP variants exploit a different estimation of
the cost function. As an example, a point-to-plane met-
rics can be used (Low, 2004) to weight the correspon-
dences between homologous points by means of the sur-
face properties. In this case each addend of the cost
function is multiplied by a weighting term wj, equal to
the normal vector of the specific jth point of the refer-
ence. Here the problem of estimating point normals de-
serves attention because its accuracy and reliability are
mandatory to achieve good results (Mitra et al., 2004).

Although the ICP formulation is very simple and of-
ten allows a closed form solution, many drawbacks can
emerge in actual contexts (Pomerleau et al., 2013). First
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of all, it is straightforward to understand that this cost
term is also linked to the possible modifications of the
environment. If the environment is heavily altered or
the points of view significantly change, the perfect align-
ment of the data sets produces higher values of the cost
function. As an effect, the ICP algorithm can fail be-
cause it reaches a minimum of C for incorrect entries of
the matrices (R,T).

Moreover, the different points of view of the sensor
among the acquisitions can further weight this aspect,
because they generate measurement artifacts near the
object edges, even if the environment is not altered. This
issue is of great importance, because the ICP algorithm
filters out these wrong correspondences before the cost
estimation by means of median filters. However, when
the data sets are obtained from altered environments,
the distances among points are higher in values. As a
consequence, the median value raises till the limit of
being comparable with the distance between points in
wrong correspondence. Under these conditions, the use
of a threshold to remove from the ICP computation
the distances between homologous points higher than
the median value does not achieve the expected results.
In this case, the effective contribution of this approach
vanishes.

Moreover, if the data set is firstly subsampled
nonuniformly to preserve information, i.e., disconti-
nuities (Gelfand et al., 2003), the comparison can be
additionally affected by errors, because edge regions
are the ones carrying the main contributions of implicit
ambiguities. Rejecting edges from the comparison,
without any smart control, removes almost all the
information, inducing registration uncertainty. For
this reason the strategy must be improved by taking
into account the three dimensions to understand how
view-points differ in space, and remove the spatial
regions that lead to errors.

2.3 Point cloud registration with deletion mask

As described before, the proposed method intends to
overcome the drawbacks of the standard ICP technique
and its variants. The method modifies the standard im-
plementation of the ICP algorithm following the pro-
cessing steps depicted in the flow diagram in Figure 6.
Specifically, deletion masks, or DMs (see the dashed
box in Figure 6), are introduced to remove the erro-
neous point correspondences which are extracted from
ambiguous regions, where implicit differences can raise
as a consequence of the change of the sensor view-point.

Referring to the nomenclature of the previous sec-
tion, the two data sets P0 (reference) and P1 (source)
differ by the goal rotation R and translation T matrices.

Input data: 
(P0, S0), 

(P1, S1)

Surface 
resampling 

u = 

Choice of the trial 
parameters (Rt, Tt)

Surface 
resampling
u = f(Rt, Tt)

Compensa�on of 
(Rt, Tt)

Mask crea�on by 
samples compari-

son

Cost es�ma�on

Is the cost 
minimum? 

Output:
(R0, T0) = 

(Rt, Tt)

Compensa�on 
of (Rt, Tt)

Surface 
resampling 

u = 

σn

λ

DM

T

F

P0, S0

ρ
v

0,j( )

P0, S0

ρ
v

0,j(u)

ρ
v

1,j( | Rt,Tt)

mj(Rt, Tt)

P1

S1

P1(Rt, Tt)

S1(Rt, Tt)

ρ’
v

0,j

C(Rt, Tt)

Fig. 6. Flowchart of the presented method for point cloud
registration.

Moreover, the starting data set is completed by the cor-
responding surface meshes S0 and S1.

Each box of the flowchart describes a specific opera-
tion on the input data, made of the full model (vertices
and faces). In summary, the reference and the source
point clouds are compared by means of a cost estima-
tion, after that the reference point cloud is analyzed to
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derive the deletion mask. As the problem is solved it-
eratively, trying to find the values of the objective ma-
trices R and T that approximate the alteration of the
sensor point of view, it is possible to exploit R and T
to find the implicit differences due to the change of the
sensor trajectory. S0 is scanned in synthetics, exploit-
ing the concepts of virtual measurement to replicate the
expected point of view of P1, iteratively defined by R
and T. This virtual point cloud is then compensated by
the same parameters R and T and compared to the ac-
tual reference. This comparison generates the deletion
mask for the specific parameters of R and T. The mask is
thus applied in product in the cost estimation, removing
wrong correspondences due to implicit and unavoidable
alterations of the point clouds under registration.

It is important to notice that the use of deletion
masks in the selection of suitable point correspon-
dences prevents the task from being solved in a closed
form. As for the vast majority of the ICP variants, the
hypotheses that lead to a close analytical solution are
no longer valid, and thus its solution has to be found by
means of a trial-and-error approach.

The following subsections highlight the bases of the
proposed algorithm, focusing on the two main concepts
of virtual measurement and deletion mask.

2.3.1 Virtual measurements. Before going through the
description of the methodology, it is mandatory to fo-
cus on a preliminary task. Actually, the implementation
of the deletion masks follows the definition of virtual
measurements. The aim of this task is the extraction of
a new arrangement of Q samples of the starting surface
mesh Si from a user-defined point of view.

As the environment is scanned with the aim of a com-
plete reconstruction, it is possible to suppose that the
whole surroundings are modeled by a set of surfaces
wrapped around a specific direction (e.g., the arrows in
Figure 2). Under this hypothesis, the processing intends
to create a novel set of points by looking at the whole
surfaces from specific positions.

In summary, the virtual scan resamples the recon-
structed surfaces starting from positions defined by the
direction of a unit vector u = [ux, uy, uz]T, having origin
in a specific initial point p0. The direction τ of this vec-
tor is sampled in (S + 1) points, labelled as ps, from the
origin of u (p0) till the end of the spatial domain (pS).
Consequently, (S + 1) planes π s, orthogonal to τ in the
3D positions of ps, can be defined. The intersection be-
tween these planes and the surface mesh Si returns a
closed curve, which can be further sampled at discrete
angular steps around the direction of u.

As a result, the process gives a new set of range mea-
surements ρv

i, j (u), where j = 1, . . . , Q. Here the apex v
underlines the virtual nature of this measurement.

It is important to notice that this process is intended
to replace the original measured points with equiva-
lent ones coming from the intersection with the three-
dimensional mesh. Then the registration of data sets
will be performed over this new set of points. This pro-
cess adds an advantage to the methodology in terms
of a better response against noise. Specifically, if noise
mainly follows a zero-mean Gaussian statistics, each
patch takes into account the influence of three points
experiencing different corruptions. Consequently, the
virtual resampling of the triangular patches acts as a
smoothing filter because the noise over the three ranges
is “averaged” by the patches. Further numerical analy-
ses have proven a reduction of the dispersion of the set
of samples of about 30%.

For further explanation on the process of virtual re-
sampling, the reader can refer to the Appendix.

2.3.2 Deletion masks. Virtual measurements constitute
the basis for deletion masks, which are the focus of in-
terest of the presented method. With reference to the
diagram in Figure 6, the starting mesh S0, made of a set
of contiguous triangular surfaces, is first resampled at
the beginning of the algorithm along a reference path
which identifies the direction over which the source
point clouds will be registered. Although any direction
can be equivalently set as the reference, for the sake
of simplicity, S0 is resampled along the z-axis (compare
with the sketch in Figure 20). The resulting set of range
values is labelled as ρv

0, j (ẑ). This task is out of the iter-
ative process and thus is computed once when the algo-
rithm starts and aims to determine Q reference samples
which will be used to create the deletion masks.

The iterative process begins with the choice of the
trial compensation matrices (Rt, Tt), full of nonvanish-
ing entries. The reference P0 is scanned virtually from
the view-point u, defined accordingly with the trial pa-
rameters (Rt, Tt). The resulting data set of range val-
ues ρv

0, j (u) is further rototranslated to compensate for
the superimposed changes defined by (Rt, Tt), giving a
new set of range samples ρ ′v

0, j . It is easy to understand
that the pairwise comparison of ρv

0, j (ẑ) and ρ ′v
0, j high-

lights the only ambiguous regions which can introduce
an overestimation of the cost function. Equivalently,
ρ ′v

0, j is found numerically by looking at exactly the same
scene of ρv

0, j (ẑ), but from a different point of view. This
replicates on P0 the same corrupted conditions that are
iteratively estimated to affect the source P1, responsi-
ble for the unavoidable implicit differences between the
two acquisitions.

Given the information on the ambiguous regions, a
deletion mask can be created to prevent these points
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from entering in the computation of the cost function.
Analytically, the entries of the deletion mask are:

m j (Rt , Tt ) =
{

0, |ρv
0, j (ẑ) − ρ ′v

0, j | > λ · σn

1, |ρv
0, j (ẑ) − ρ ′v

0, j | ≤ λ · σn

(2)

being σ n the noise standard deviation, whose am-
plitude will be discussed in the next sections, and λ a
positive number identifying the mask strength. The lat-
ter term should be chosen properly in accordance with
the noise statistics. As an example, if range measure-
ments are mostly degraded by white noise, a value of
this product greater than three times the variance (λ =
3) is enough to ensure that differences between couples
ρv

0, j (ẑ) and ρ ′v
0, j are only due to implicit alterations, out

of the statistics with a confidence equal to 99.7%.
The iteration process is finally completed by the sur-

face resampling of the source input mesh. This data set
is first rototranslated applying the trial parameters at
each iteration. Then, it is resampled following the pro-
cedure of virtual measurements with u = ẑ (misalign-
ments have been already compensated). It is important
to notice that the surface resampling of the source mesh
still gives Q range values, named as ρv

1, j (ẑ|Rt , Tt ), which
are implicitly in pairwise correspondence with those ex-
tracted from the reference data set (ρv

0, j (ẑ)). As a con-
sequence, the point matching is guaranteed without the
application of any a priori condition.

Starting from its ICP formulation in Equation (1), the
cost function can be finally redefined as:

C (Rt , Tt ) =
Q∑

j=1

m j (Rt , Tt )

× (
ρv

0, j (ẑ) − ρv
1, j (ẑ|Rt , Tt )

)2 (3)

The method can be thus iterated improving the so-
lutions for the cost optimization, within a termination
criterion. The final trial matrices R0 and T0 that give the
minimization of the cost are those of the refined trans-
formation that best approximates the actual values of R
and T.

3 EXPERIMENTS AND DISCUSSION

3.1 Case study

The proposed technique has been developed for the
registration of point clouds acquired in the context of
indoor infrastructures, where GPS localization is no
longer available. The following subsections describe the
experimental setup used for the acquisitions, the choice
of the preprocessing parameters and the error metrics

that will be used for the comparison of results with fur-
ther ICP variants.

3.1.1 Experimental setup. In the presented experi-
ments, 3D data sets are referred to a local reference
system (xi,yi,zi) of the ith acquisition, where the xizi-
plane is assumed parallel to the ground. A mobile
vehicle proceeds through the environment following
straight trajectories along the zi-axis, and carries a laser
rangefinder which samples the surroundings by slices.
The origin of the local reference system is placed on the
position assumed by the sensor when it acquires the first
slice of points. Each slice has N distance measurements
expressed in terms of couples (ρk,θk), k = 1, . . . , N,
belonging to planes parallel to (xi,yi). Therefore, the re-
sulting point cloud is implicitly ordered in discrete in-
dices, because each range value ρk can be labeled by
increasing angles θk and slices.

Without any loss of generality, the registration is ap-
plied to distance measurements performed using the
time-of-flight laser scanner AccuRange AR4000-LIR in
Figure 7 (AR4000 Laser Rangefinder, 2014). It is made
of a laser source working at a wavelength of 780 nm. The
generated beam is deflected by 90° by a rotating mirror
(2,600 rpm) and then swept through 360°, to sample the
environment by slices with a maximum range distance
of 15 m. It is worth noticing that acquisitions are ac-
tually obtained following a helix, having axis along zi.
Nevertheless, range values are assumed to lie on sam-
pling slices, which are formed anytime the mirror per-
forms a 360°-revolution. The position of the slice origin
on the ground is equal to the average value of the xizi-
coordinates returned by the vehicle odometry. The ve-
hicle speed has been set to 0.2 m/s, whereas the sample
rate of the rangefinder has been fixed to 1 kHz. By com-
bining these parameters, the number of slices of each
acquisition is in the range between 200 and 250, which
corresponds to a spatial resolution along the direction
of the vehicle movement of about 75 mm. Finally the
range resolution is equal to 0.25 mm.

Preliminary analyses on the collected samples had
demonstrated the existence of three noise sources
(Marani et al., 2013):

1. statistical white noise with standard deviation
equal to 2.5 mm at a distance of 1 m;

2. colored noise due to the temperature control with
a slow time constant of about 2.1 s;

3. an amount of failed acquisitions (5% of the total
number of the acquired samples).

Knowing the statistics of the point cloud, it is possi-
ble to determine the parameters of the preprocessing
steps described in Section 2.1. With more details, the
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Fig. 7. (a) Experimental setup used for actual inspections.
(b) Picture of the laser rangefinder, underlining the optical

source and the rotating mirror.

threshold value Sth for the choice of the poorer cluster
made of outlier candidates is equal to 5. The Ramer–
Douglas–Peucker algorithm has been applied to the
range values belonging to each slice of the data set with
a tolerance value RDPtol = 1 mm at 1 m of distance from
the sensor source.

It is worth noticing that these parameters are chosen
to prevent the lack of information due to the data set
simplification. This ensures that the application of the
preprocessing steps does not impact the results of the
point cloud alignment.

To prove the efficiency of the preprocessing proce-
dures, Figure 8a displays an example of indoor envi-
ronment acquired with the proposed setup. A covered
parking area is modeled by the point cloud in Figure 8b,
whose samples are referred to a local system of coor-
dinates, having origin in the center of the first slice of
points. The application of the preprocessing steps pro-
duces the point cloud in Figure 8c, which is almost three

Fig. 8. (a) Covered parking acquired by the laser
rangefinder. (b) Corresponding reference data set obtained
by the AccuRange AR 4000 laser rangefinder. (c) Simplified
point cloud obtained by the application of the preprocessing

procedures.

times smaller in size than the starting one. In summary,
as an effect of the preprocessing steps, all point clouds
considered in these experiments have sizes in the range
between 7×104 and 105 points.

3.1.2 Error metrics for result comparison. The results
of the registration processes will be compared with
those returned by other ICP algorithms. In this case
three variants of the ICP implementation have been
considered: the standard linear ICP (Lin-ICP) solved
by means of the Single Value Decomposition (SVD)
(Chen and Medioni, 1991; Besl and McKay, 1992), the
nonlinear ICP (NL-ICP) proposed in (Fitzgibbon, 2003)
which is directly solved as a Levenberg–Marquardt
(LM) optimization problem, and an optimized linear
ICP variant with the point-to-plane (Pt2Pl) metrics
(Low, 2004). All algorithms used for the comparison
are available online as a part of the point cloud library
(PCL) (Rusu and Cousins, 2011).



524 Marani et al.

Fig. 9. Reflective marker used for the point-by-point
comparison of registrations.

Following the same strategy adopted by marker-
based approaches, several landmarks are used to obtain
an effective comparison with a reliable ground truth.
In the proposed experiments, the environment under
analysis has been structured with seven high-reflection
markers (see Figure 9), named as Mk, k = 1, . . . , 7,
whose position is chosen to investigate all degrees of
freedom (four markers on the side walls of the park-
ing area, two on the ground, and one on the floor) and
to obtain their detection from each point of view. These
markers can be easily distinguished within the data sets
by looking at the intensity of the laser spot (this value is
returned by the sensor for each range sample). Hence,
the error metrics is defined as the distance (dx, dy, and
dz along the three corresponding axes) between homol-
ogous markers extracted from the reference cloud P0

and the source one, after its registration. Specifically,
the exact marker position is assumed as the center of
mass of the cluster which model the marker. In this way
the measurement uncertainty is divided by the number
of points of the cluster, thus becoming negligible in the
evaluation of the registration error.

Furthermore, it is worth noting that the position of
the markers in the point clouds is established through
odometry, because the data set creation makes use of
the position of the vehicle to translate range values into
spatial 3D coordinates. This gives in turns an error in
the localization of such points, because the vehicle po-
sition is determined with the measurement uncertainty
of the encoders. Nevertheless, the comparison of results
obtained by the proposed method and the other ICP
variants is consistent, because all the methods are ap-
plied on the same data sets. As a consequence, the un-
certainty will produce the same bias errors in the dis-
tance measurements between the homologous markers.

3.1.3 Model optimization. Although the formulation of
the presented method is general and can be applied in

any context, given the specific case of study, some sim-
plifications are imposed to increase efficiency by reduc-
ing the computational requirements.

As a first step, it is possible to take advantage of the
measurements purposes. As stated before, environmen-
tal monitoring aims to understand whether a change af-
fects the scene under analysis. Consequently, the vehi-
cle has to sense the environment from points of view
that have to be close to the one of the reference. In this
case the comparison makes sense because the same tar-
gets, which are constitutive of the scene, can be com-
pared. As a consequence, all paths followed by the ve-
hicle are almost comparable, but not equal.

Moreover, in the scenario of environmental moni-
toring, 3D reconstructions will be performed exploiting
the same experimental setup, i.e., with fixed elevation
of the sensor on the mobile vehicle. Hence, consecutive
measurements are affected by relative alterations of
the reference system in the xz-plane. Analytically, any
alteration of the vehicle trajectory can be compensated
by means of two translations X, Z along the xi- and
zi-axis, respectively, and a rotation H around the
yi-axis. This hypothesis introduces a simplification
in the registration scheme and consequently reduces
the computational time required to perform the cost
optimization described in Section 2.3, without a corre-
sponding degradation of the final results, as it will be
shown in the next subsections.

3.2 Experiments and results

Several experiments have been run to compare the re-
sults of the registration obtained with the proposed
method with those returned by three ICP variants.

Two different conditions are discussed in the next
subsections to prove the robustness of the registration.
In the first case the data sets are extracted from the
same environment (static environment), sensed from
different points of view, i.e., trajectories. Then, the
acquisitions will be performed still on the same environ-
ment, but introducing some alterations (changing envi-
ronment).

Finally, acquisitions of an indoor environment, the
entrance hall of a building under construction, will be
registered, to further compare the proposed methodol-
ogy with the existing ones.

3.2.1 Acquisitions of static environments. In the first ex-
periments, the data set registration is performed on
static environments, i.e., perfectly equal scenes. As an
effect, although surroundings do not change with re-
spect to the reference data set, relative differences
among the point clouds arise because of the alteration
of the vehicle trajectories and the measurement noise.
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Fig. 10. Original data sets in the local reference systems of
the laser rangefinder. Blue and red dots belong to different

data sets to be registered, namely P0 and P3, respectively (see
color figure in online version).

Three source data sets P1, P2, and P3, in addition to
the reference P0, have been acquired at different epochs
following different trajectories. Here, to prove the ro-
bustness of the method, P3 has different spatial resolu-
tion along the direction of motion of the vehicle. In par-
ticular, its size is almost halved with respect to P0. As
an example, the comparison of the data sets P0 and P3

is shown in Figure 10.
Following the theoretical description in Section 2.3,

the deletion masks have been determined starting from
the choice of the trial parameters Xt, Zt, and Ht. In this
case the number of points Q drawn from the input data
sets in the surface resampling task has been imposed
equal to 38,400, corresponding to 160 slices having 240
samples. An example of deletion mask is reported in
Figure 11, where the points of the resampled data ex-
tracted from P0 are colored accordingly with the values
assumed by the mask.

Figure 12 shows the first results of the registration of
P3 on the reference P0 performed by the linear ICP al-
gorithm and the proposed variant, which employs the
deletion masks (see Figures 12a and b, respectively). Al-
though the results seem to be comparable, the estimated
correction parameters differ in values. This considera-
tion is further proved by the analysis of Table 1, which
reports the correction parameters estimated by the four
considered ICP algorithms. In particular, the param-
eters obtained by the Lin-ICP and the DM-ICP pro-
duce the vehicle trajectories described by the vectors in
Figure 13.

Table 2 summarizes the minimum, maximum, and
average values of the distances computed between
corresponding reflective markers extracted from the
reference data set and the registered ones. Bold values
indicate the best results achieved by the comparisons.

Fig. 11. (a) Effects of the masking process: red points are
neglected in the pair-wise registration of data sets; (b)

magnified view of the deletion mask applied to the samples
extracted from the reference (see color figure in online

version).

Table 1
Results of the registrations of the source data sets P1, P2, and
P3 on the reference data set P0. X0 and Z0 are expressed in
millimeters (Lin: standard linear ICP; NL: nonlinear ICP;

Pt2Pl: Point-to-Plane metrics; DM: Deletion Mask)

Lin NL Pt2Pl DM

X0

P1 –1121.1 –998.06 –1239.06 –1230.1
P2 61.14 29.25 109.75 138.11
P3 –1341.7 –1118.27 –1570.83 –1598.3

Z0

P1 152.81 118.53 191.85 242.61
P2 259.08 196.4 441.96 461.68
P3 240.38 174.2 356.87 370.72

H0

P1 4.94° 4.29° 5.67° 5.49°
P2 –2.35° –2.01° –2.75° –3.09°
P3 4.73° 3.5° 6.13° 6.19°
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Fig. 12. (a) Results of the data set registration performed
with the Lin-ICP algorithm. (b) Point clouds registered by

the use of the proposed algorithm based on the use of
deletion masks (see color figure in online version).

Fig. 13. The red and green arrows are the robot trajectories
within the reference point cloud, estimated by the Lin-ICP
and the proposed method, respectively (see color figure in

online version).

The insight into the results of Table 2 reveals that
the use of the deletion masks can improve the estima-
tion of the registration parameters, because the distance
components dx and dz are always lower when the
deletion masks are used. This scenario is altered only
in the case of the analysis of P2, whose registration per-
formed by the linear ICP induces the lowest values of
the term dx. However, the decrease of the mean value of
dx is much lower in magnitude than the improvements
produced by the DM-ICP in the remaining cases (see
the registrations of P1 and P3).

Table 2
Minimum, maximum, and mean distance values [mm]

between corresponding reflective markers extracted from the
registrations of P1, P2, and P3 on P0. Best results are

highlighted in bold (Lin: standard linear ICP; NL: nonlinear
ICP; Pt2Pl: Point-to-Plane metrics; DM: Deletion Mask)

Lin NL Pt2Pl DM

dx

P1 Min 69.85 92.93 4.75 2.23
Max 343.17 251.66 75.41 76.33
Mean 192.77 156.33 39.88 37.94

P2 Min 2.82 5.89 6.37 19.48
Max 63.44 112.96 77.78 125.19
Mean 30.01 38.7 30.48 44.77

P3 Min 57.73 157.39 17.26 10.05
Max 246.7 426.76 89.62 63.89
Mean 152.39 273.28 45.9 36.85

dy

P1 Min 0.24 3.32 0.53 1.08
Max 8.92 21.94 21.43 21.59
Mean 2.34 8.55 6.41 6.45

P2 Min 1.99 5.98 3.89 3.76
Max 40.27 33.87 29.05 28.72
Mean 20.43 16.16 17.47 15.06

P3 Min 0.08 0.85 3.02 1.7
Max 23.9 43.01 50.01 33.05
Mean 6.92 22.54 17.23 13.83

dz

P1 Min 1.62 2.49 13.75 0.41
Max 104.88 205.21 105.53 58.25
Mean 38.47 118.1 60.55 34.31

P2 Min 69.7 175.78 1.04 6.43
Max 301.18 348.24 136.18 130.88
Mean 186.78 260.21 41.15 39.5

P3 Min 10.35 99.12 14.6 10.82
Max 237.19 321.71 133.61 112.55
Mean 117.02 194.91 68.2 62.97

At the same time, results in Table 2 show a different
behavior of the distance term computed along the y-axis
(dy). The linear ICP often carries to the best results in
comparison with the other methods, although improve-
ments are in any case below those obtained for the com-
parison of the other two components dx and dz. This
behavior is mainly ascribable to the experimental setup
used for the experiments. In fact, the only contribution
responsible for the distance component dy is the mea-
surement noise. It is clear that changing the algorithm,
making it heavier, with the sole intention of compensat-
ing for noise would not produce appreciable improve-
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Fig. 14. Comparison of results obtained by the use of the four
ICP variants. The bar plot displays the values of the figure of

merit εM, defined to compare the registration outcomes.

ment of the overall results. In other terms, although the
analytical formulation of the Lin-, Nl- and Pt2Pl-ICP
considers rototranslation matrices full of nonvanishing
entries, it does not improve significantly the results.

An easier comparison can be derived by means of the
figure of merit εM which depends on the global average
value of the distance vectors made of the three compo-
nents (dx, dy, dz). Analytically, it is equal to:

εM = mean
Mk

{√
d2

x + d2
y + d2

z

}
(4)

where the mean function is first computed among the
corresponding marker distances. This figure of merit is
plotted in Figure 14.

The analysis of the results states a clear reduction of
the distance errors. Specifically, averaging the εM values
among the three registrations, the mean values of εM

are equal to 197.02 mm for the Lin-ICP, 273.94 mm for
the NL-ICP, and 83.75 mm for the Pt2Pl-ICP, whereas
the homologous term for the proposed algorithm is
equal to 62.46 mm. Also this result proves that the ini-
tial hypothesis of alteration of the vehicle trajectory in
the xz-plane, does not lead to appreciable registration
errors.

Finally, it is important to notice that the numerical
gap found by the comparison of the εM values is much
higher than the measurement uncertainty produced by
the sensor, close to few millimeters. As a consequence,
this result is only attributable to the effective contribu-
tion brought by the methods to the registration process.

3.2.2 Acquisitions of changing environments. The com-
parison of changing environments, i.e., scenes with
small differences, is the most challenging problem in
the data set registration, because the cost function takes
into account also the presence of scene alterations. In
this case, the distance between the two considered point

Fig. 15. Comparison between (a) the reference P0 and (b) the
source point cloud P4. The circle includes the altered points.

clouds can be significantly different from zero, till the
limit of turning into a local minimum. In this case,
the ICP algorithm reaches the convergence with regis-
tration parameters which can be significantly different
from the correct one.

These experiments have considered three new ac-
quisitions, namely P4, P5, and P6, acquired at different
epochs within the same environment, after that the
position of several foreground objects has changed.
In particular, another car is added in the parking,
producing an alteration of 2% of points of the reference
data set. Quantitatively, the point cloud P4 shows 1,463
altered points over the total size of 79,073 samples. A
comparison between the data set P4 and the reference
P0 is reported in Figure 15, where the two point clouds
are displayed.

Also in this case, the P6 data set has been cre-
ated by halving the spatial resolution along the straight
trajectory followed by the vehicle, i.e., doubling the
speed of the vehicle that carries the sensor, but keep-
ing the remaining set of measurement parameters. The
results of the registration process are thus reported in
Table 3, where the estimated parameters derived by the
four methods under analysis are shown.

Results are once more in contrast and produce
different distances between corresponding markers.
As shown in Table 4, which describes the min-
imum, maximum, and mean distance contributions
computed among the homologous markers of differ-
ent data sets, the use of deletion masks can reduce
the registration errors. This consideration is verified
for the analysis of the dx component, whose values
obtained by the DM-ICP are better than the oth-
ers in most cases. On the contrary, the inspection
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Table 3
Results of the registrations of the source data sets P4, P5, and
P6 on the reference data set P0. X0 and Z0 are expressed in
millimeters (Lin: standard linear ICP; NL: nonlinear ICP;

Pt2Pl: Point-to-Plane metrics; DM: Deletion Mask)

Lin NL Pt2Pl DM

X0

P4 –154.06 –123.95 –173.29 –237.29
P5 –935.13 –820.66 –1062.38 –1085.5
P6 118.53 –253.26 107.22 86.2

Z0

P4 219.71 167.16 515.26 482.02
P5 142.2 109.1 232.78 291.26
P6 315.91 207.09 674.43 674.42

H0

P4 1.5° 1.27° 1.65° 2.3°
P5 2.3° 1.8° 2.96° 2.95°
P6 –5.54° –3.6 –8.05 –7.81°

of results shows again comparable values of dy ob-
tained by the four methods, although Lin-, NL-, and
Pt2Pl-ICP exploit the full transformation matrices,
whereas the proposed technique simplifies the prob-
lem to the optimization of only three terms. Although
measurement noise determines a contribution to the
overall cost function, which cannot be compensated by
the DM-ICP, its outcomes are in any case comparable.
Once again it justifies the initial downgrade of the prob-
lem to the compensation of the vehicle trajectory with
only three degrees of freedom.

Results obtained by the Pt2Pl-ICP and the DM-ICP
in terms of the dz component are highly comparable
in magnitude. In this case, it is important to observe
that the point-to-plane metrics allows the reduction
of the contributions to the objective cost function of
erroneous correspondences between samples. This
filtering effect is noticeable especially in these last
experiments, when the environments under testing
show relative changes. In principle, the method weights
such correspondences, exploiting the surface similarity.
With more details, the point distance is multiplied by a
term (dot product of surface normals) which is 0 when
the two surfaces are orthogonal and 1 when the two
surfaces are parallel. At a first glance, this metrics seems
to limit wrong correspondences in the cost computation
in a similar way to the DM approach, thus producing
comparable results. Actually, given the weight formu-
lation, the Pt2Pl metrics is not able to discriminate the
presence of scene changes due to the movement of
objects having parallel surfaces to the ones placed in
the corresponding regions of the reference point cloud.

Table 4
Minimum, maximum, and mean distance values [mm]

between corresponding reflective markers extracted from the
registrations of P4, P5, and P6 on P0. Best results are

highlighted in bold (Lin: standard linear ICP; NL: nonlinear
ICP; Pt2Pl: Point-to-Plane metrics; DM: Deletion Mask)

Lin NL Pt2Pl DM

dx

P4 Min 18.02 38.55 4.9 1.19
Max 55.66 83.35 72.35 72.08
Mean 36.46 51.36 35.67 33.96

P5 Min 9.62 17.29 6.89 7.91
Max 205.36 294.92 109.33 83.49
Mean 95.14 141.38 41.32 38.21

P6 Min 45.8 71.47 5.06 14.12
Max 126.27 149.42 49.6 49.23
Mean 78.55 110.44 28.23 25.93

dy

P4 Min 2.90 4.06 1.26 1.25
Max 24.29 28.57 26.58 33.32
Mean 13.95 14.48 10 14.24

P5 Min 0.46 0.34 2.67 2.81
Max 38.03 59.04 63.96 62.47
Mean 18.16 20.13 24.07 22.13

P6 Min 0.7 24.75 3.23 13.81
Max 14.38 27.31 14.96 16.4
Mean 5.59 26.03 8.14 15.72

dz

P4 Min 73.88 141.06 1.46 9.73
Max 302.65 364 166.24 160.59
Mean 200.59 275.02 59.76 59.02

P5 Min 34.09 36.48 11.26 59.33
Max 126.49 457.62 190.22 132.22
Mean 91.96 148.09 38.3 71.48

P6 Min 132.43 149.82 68.56 90.3
Max 422.07 524.92 270 233.8
Mean 310.31 337.37 136.53 174.24

Consequently, the point-to-plane metrics fails and the
cost term can grow as much as the objects position
changes. On the contrary, the use of virtual resampling
and DMs can automatically and perceptively remove
wrong point correspondences, regardless the relative
direction of the surface normals. Nevertheless, results
in Table 4 demonstrate that the point-to-plane error
metrics can add reliability to the convergence of ICP
algorithms. Its implementation in the proposed method
will be the aim of future investigations.

Then, with reference to the outcomes displayed in
Figure 16, where the figure of merit εM is presented, the
use of deletion masks improves the registration process
in two cases out of three. Quantitatively, the average
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Fig. 16. Comparison of results obtained by the use of the four
ICP variants. The bar plot displays the values of the figure of

merit εM, defined to compare the registration outcomes.

value among registrations of εM reaches 223.28 mm in
the case of the Lin-ICP, 297.6 mm for the NL-ICP, 86.27
mm for the Pt2Pl-ICP, and 65.06 mm for the proposed
algorithm. By a comparison of these results with those
displayed in the previous subsection, it can be stated
that the proposed method is robust against consistent

Fig. 17. Original data sets acquired from an entrance hall.
Point clouds are referred on the local reference system of the

sensor (see color figure in online version).

scene alterations, because the average value of εM does
not change as scene differences arise.

3.2.3 Further analysis of an indoor environment. The
proposed method has been further tested for the

Fig. 18. Top views of the source point clouds (colored data) registered on the reference one (black data). The registration process
is performed exploiting the (a) Linear ICP, (b) the Nonlinear ICP with kD-tree representation of points, (c) the standard ICP

with point-to-plane metrics, and (d) the proposed ICP with deletion mask (see color figure in online version).
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Fig. 19. Comparison of the reference point cloud (blue dots)
and the registered one (red dots) extracted from the results in
Figure 18. Results of (a) the Lin-ICP, (b) the Pt2Pl-ICP, and

(c) DM-ICP.

registration of two point clouds obtained by the inspec-
tion of another environment, namely the entrance hall
of an under-construction building, to prove the quality
of the algorithm. The specific entrance hall constitutes
a challenging indoor environment because of its spatial
uniformity due to the lack of pillars, whose shapes
and position were highly informative in the previous
registrations.

As already discussed for the previous investigations,
the experiment has been performed by changing the
pose assumed by the vehicle before starting its move-
ment: two point clouds model the same environment
from different points of view. Figure 17 shows the two
point clouds extracted from the inspection of the en-
trance hall and referred to the local reference system
of the corresponding acquisition.

Also in this case, the proposed method for point cloud
registration has been compared with the three consid-
ered ICP implementations (Lin, NL, and Pt2Pl), giving
rise to the results in Figure 18, which plots separately
the top views of the source point clouds, registered on
the reference one.

At first glance, the qualitative inspection of outcomes
prove that the NL-ICP returns the worst results among
the implemented methods. On the contrary, the Lin-
ICP, the Pt2Pl-ICP, and the DM-ICP perform good reg-
istrations, because the source point cloud well-matches
the reference one.

With more details, Figure 19 highlights the differ-
ences between the reference data set and the source
one registered by means of the Lin-ICP, the Pt2Pl-ICP,
and the proposed method. The focus on Figure 19
reveals that the Lin-ICP can poorly register the input
data sets. On the other hand, the Pt2Pl-ICP and the
proposed DM-ICP are in good agreement with com-
parable results, although the DM-ICP makes use of
a simpler distance metrics and a registration scheme
dealing with three parameters. Quantitatively, the three
correction parameters found by the Pt2Pl-ICP are X0 =
810.92 mm, Z0 = 1089.96 mm, and H0 = –8.12°,
whereas the DM-ICP returns X0 = 813.48 mm, Z0 =
1071.09 mm, and H0 = −8.18°. Here, differences
between corresponding parameters are negligible,
because these terms are slightly higher than the
measurement uncertainty of the sensor.

In summary, as stated by the inspection of the previ-
ous experiments, it is possible to envisage even better
results by implementing in the proposed algorithm the
point-to-plane distance metrics, which weights corre-
spondences between points on the similarities between
planes.

4 CONCLUSIONS

In this article, a numerical approach for point cloud
registration returned by a laser rangefinder has been
presented. The analysis has been focused on the topic
of remote sensing of indoor civil infrastructures, where
standard approaches based on GPS are no longer
available. Acquisitions are thus referred to a local
reference system having origin in the starting position
of the vehicle that carries the sensor. In this case, occlu-
sions can emerge when the point of view of the sensor
changes, and thus consecutive reconstructions of the
same environment can suffer from implicit differences.
For this reason deletion masks have been introduced
iteratively within the standard ICP technique to delete
those points that can induce erroneous registrations.
The method has been applied for the registration of
data sets extracted from actual environments, namely a
covered parking area and an entrance hall, where scenes
are equal or slightly altered. Several comparisons with
three well-known ICP variants have been performed
by computing the distances between distinguishable
markers extracted from the reference data set and the
registered ones. Outcomes have proved a reduction of
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the registration errors, with respect to the other imple-
mented ICP variants. Only the use of the point-to-plane
distance metrics between the data sets has lowered the
negative effects of erroneous correspondences, with
results often similar to those of the presented method,
which implements the simpler point-to-point metrics.
This behavior suggests that future developments of
the method will use a more effective error metrics to
further minimize the negative effects of wrong point
correspondences. Finally, additional contributions will
be dedicated to the reduction of the computational time
required by the creation of the deletion masks. As an
example, pre-computed look-up tables can be loaded at
each iteration to speed up the algorithm.
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APPENDIX

ANALYTICAL FORMULATION FOR VIRTUAL
MEASUREMENTS

Referring to the sketch in Figure A1, the positions
where the environment is virtually sensed are described
by the generic direction of the unit vector u = [ux,
uy, uz]T, having u2

x + u2
y + u2

z = 1. Specifically, these
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positions are obtained by dividing the corresponding
line τ in (S + 1) points ps, with s = 0, . . . , S, starting
from p0 = [x0, y0, z0]T, origin of u, till pS (end of the do-
main). It is easy to demonstrate that the formulation of
the line τ can be written as:

τ :

{
uz (x − x0) = ux (z − z0)

uz (y − y0) = uy (z − z0)
(A.1)

It follows that the generic point of view ps, origin of
the numerical resampling of the surfaces, is placed at
coordinates:

ps = [x0 + s 
p ux , y0 + s 
p uy, z0 + s 
p uz]
T (A.2)

being 
p the sampling interval of the line τ .
Once these positions are determined, the surround-

ings can be resampled by considering the intersection
between a line, orthogonal to τ and swept through 360
degrees around τ by steps of 
t, and the corresponding
triangular patch of the surface set Si.

Analytically, the problem of virtual resampling con-

sists in finding the point p f
s,t where the line υu

s,t on the
plane π s intercepts the triangle π f (pink patch in Figure
A1). Hereafter, t = 0, . . . , T is related to the specific dis-
crete angle θ t, which describes the slope of the line υu

s,t
on π s. Notice that Q = (S + 1)·T.

Fig. A1. Scheme of principle for the virtual measurement.
Red dots on the surface set Si are the results of the discrete
resampling along the direction of the vector u, whereas the

green dots are the points of the initial data set (see color
figure in online version). The sketch also reports the main
parameters and variables of the presented formulation for

virtual resampling.

The main idea for determining the equation of υu
s,t is

to start with the formulation of the line υ ẑ
0,t , which be-

longs to a set of lines able to divide the xy-plane in T
equally spaced portions around the z-axis, and crosses
the origin of the system of coordinates (x, y, z). Then
applying a transformation of reference systems, υ ẑ

0,t can
be moved onto π s, obtaining the equation of υu

s,t . It is
straightforward to verify that υ ẑ

0,t has formulation:

υ ẑ
o,t :

{
sin θt x − cos θt y = 0

z = 0
(A.3)

Knowing the components of the unit vector u, it is
possible to couple a rotation matrix R able to transform
the versor ẑ, element of the basis of the coordinate sys-
tem (x, y, z), into a new vector having the same origin,
but parallel to τ . Taking advantage of the well-known
Rodrigues’ formula (Murray et al., 1994), the term re-
sponsible for the rotation of ẑ onto the direction of u is:

Ru
ẑ =

⎡
⎢⎢⎢⎢⎣

1 − 1 − uz

u2
x + u2

y

u2
x − 1 − uz

u2
x + u2

y

ux uy ux

− 1 − uz

u2
x + u2

y

ux uy 1 − 1 − uz

u2
x + u2

y

u2
y uy

−ux −uy uz

⎤
⎥⎥⎥⎥⎦(A.4)

The analytical formulation of the sampling line υu
s,t

can be thus obtained by applying a Ru
ẑ -rotation of the

fundamental line υ ẑ
0,t and a rigid translation on the spe-

cific point of view ps.
Applying the presented transformation, υu

s,t can be
written as:

υu
s,t :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ux + uy tan θt ) (x − x0 − s
pux )
z − z0 − s
puz

= 1 − uz

u2
x + u2

y

u2
x + 1 − uz

u2
x + u2

y

ux uy tan θt − 1

(ux + uy tan θt ) (y − y0 − s
puy)
z − z0 − s
puz

= 1 − uz

u2
x + u2

y

u2
y tan θt + 1 − uz

u2
x + u2

y

ux uy − tan θt

(A.5)

Then, the generic sampling line can be tested to find

the target point p f
s,t among all the possible intersections

of υu
s,t with the planes of the triangles which form the set

of surfaces Si. The fth triangle belonging to Si, f = 1, . . . ,
F, being F the number of triangles, is defined by an or-
dered set of three vertices (v f

1 , v
f

2 , v
f

3 ), each one having
coordinates (x f

a , y f
a , z f

a ), with a = 1, 2, 3. When the ver-
tices are known, the equation of the plane π f can be de-
rived as well as the coordinates of the points p f

s,t , which
are the intersections between υu

s,t and any plane π f. As

stated previously, there is only one point p f
s,t , among the
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set of F possible points p f
s,t , which is a valid solution

for the resampling problem: if the intersection returns

a point falling within the triangle sides, p f
s,t is a sample

of the data set.
This condition can be verified by testing whether p f

s,t

is inside the spatial region bounded by the three planes
π

f,⊥
12 , π

f,⊥
23 and π

f,⊥
13 , orthogonal to the plane π f and

including the couples of points (v f
1 , v

f
2 ), (v f

2 , v
f

3 ), and
(v f

1 , v
f

3 ), respectively. Equivalently, given three num-
bers α � β � γ , with α = 1, 2 and β = 2, 3, this condi-
tion requires that the possible point p f

s,t and the vertex
v

f
γ are both placed in the same hemispace generated by

the plane π
f,⊥

αβ . Analytically, the point p f
s,t satisfies the

following:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sgn
(
π

f,⊥
12

(
v

f
3

))
· π

f,⊥
12

(
p f

s,t

)
> 0

sgn
(
π

f,⊥
23

(
v

f
1

))
· π

f,⊥
23

(
p f

s,t

)
> 0

sgn
(
π

f,⊥
13

(
v

f
2

))
· π

f,⊥
13

(
p f

s,t

)
> 0

(A.6)

where sgn(·) is the sign function and π(p) is the result
of the application of the point p to the equation of the
plane π .

Finally, given the coordinates of p f
s,t , the radial

component can be easily determined, thus obtain-
ing the effective virtual range measurement ρv

i, j (u)
in the reference system described by u and centered
on ps.


