8 research outputs found

    On the use of COSMO/SkyMed data and Weather Models for interferometric DEM generation

    Get PDF
    AbstractThis work experiments the potentialities of COSMO/SkyMed (CSK) data in providing interferometric Digital Elevation Model (DEM). We processed a stack of CSK data for measuring with meter accuracy the ground elevation on the available coherent targets, and used these values to check the accuracy of DEMs derived from 5 tandem-like CSK pairs. In order to suppress the atmospheric signal we experimented a classical spatial filtering of the differential phase as well as the use of numerical weather prediction (NWP) model RAMS. Tandem-like pairs with normal baselines higher than 300 m allows to derive DEMs fulfilling the HRTI Level 3 specifications on the relative vertical accuracy, while the use of NWP models still seems unfeasible especially for X-band

    Integration of persistent scatterer interferometry and ground data for landslide monitoring: the Pianello landslide (Bovino, Southern Italy)

    Get PDF
    We present an example of integration of persistent scatterer interferometry (PSI) and in situ measurements over a landslide in the Bovino hilltop town, in Southern Italy. First, a wide-area analysis of PSI data, derived from legacy ERS and ENVISAT SAR image time series, highlighted the presence of ongoing surface displacements over the known limits of the Pianello landslide, located at the outskirts of the Bovino municipality, in the periods 1995–1999 and 2003–2008, respectively. This prompted local authorities to install borehole inclinometers on suitable locations. Ground data collected by these sensors during the following years were then compared and integrated with more recent PSI data from a series of Sentinel-1 images, acquired from March 2014 to October 2016. The integration allows sketching a consistent qualitative model of the landslide spatial and subsurface structure, leading to a coherent interpretation of remotely sensed and ground measurements. The results were possible thanks to the synergistic operation of local authorities and remote sensing specialists, and could represent an example for best practices in environmental management and protection at the regional scale

    test

    No full text

    PSI Spatially Constrained Clustering: The Sibari and Metaponto Coastal Plains

    No full text
    PSI data are extremely useful for monitoring on-ground displacements. In many cases, clustering algorithms are adopted to highlight the presence of homogeneous patterns; however, clustering algorithms can fail to consider spatial constraints and be poorly specific in revealing patterns at lower scales or possible anomalies. Hence, we proposed a novel framework which combines a spatially-constrained clustering algorithm (SKATER) with a hypothesis testing procedure which evaluates and establishes the presence of significant local spatial correlations, namely the LISA method. The designed workflow ensures the retrieval of homogeneous clusters and a reliable anomaly detection; to validate this workflow, we collected Sentinel-1 time series from the Sibari and Metaponto coastal plains in Italy, ranging from 2015 to 2021. This particular study area is interesting due to the presence of important industrial and agricultural settlements. The proposed workflow effectively outlines the presence of both subsidence and uplifting that deserve to be focused and continuous monitoring, both for environmental and infrastructural purposes

    A Combined Approach of Field Data and Earth Observation for Coastal Risk Assessment

    No full text
    The traditional approach for coastal monitoring consists in ground investigations that are burdensome both in terms of logistics and costs, on a national or even regional scale. Earth Observation (EO) techniques can represent a cost-effective alternative for a wide scale coastal monitoring. Thanks to the all-weather day/night radar imaging capability and to the nationwide acquisition plan named MapItaly, devised by the Italian Space Agency and active since 2010, COSMO-SkyMed (CSK) constellation is able to provide X-band images covering the Italian territory. However, any remote sensing approach must be accurately calibrated and corrected taking into account the marine conditions. Therefore, in situ data are essential for proper EO data selection, geocoding, tidal corrections and validation of EO products. A combined semi-automatic technique for coastal risk assessment and monitoring, named COSMO-Beach, is presented here, integrating ground truths with EO data, as well as its application on two different test sites in Apulia Region (South Italy). The research has shown that CSK data for coastal monitoring ensure a shoreline detection accuracy lower than image pixel resolution, and also providing several advantages: low-cost data, a short revisit period, operational continuity and a low computational time

    High-Resolution Flood Monitoring Based on Advanced Statistical Modeling of Sentinel-1 Multi-Temporal Stacks

    No full text
    High-resolution flood monitoring can be achieved relying on multi-temporal analysis of remote sensing SAR data, through the implementation of semi-automated systems. Exploiting a Bayesian inference framework, conditioned probabilities can be estimated for the presence of floodwater at each image location and each acquisition date. We developed a procedure for efficient monitoring of floodwaters from SAR data cubes, which adopts a statistical modelling framework for SAR backscatter time series over normally unflooded areas based on Gaussian processes (GPs), in order to highlight flood events as outliers, causing abrupt variations in the trends. We found that non-parametric time series modelling improves the performances of Bayesian probabilistic inference with respect to state-of-the-art methodologies using, e.g., parametric fits based on periodic functions, by both reducing false detections and increasing true positives. Our approach also exploits ancillary data derived from a digital elevation model, including slopes, normalized heights above nearest drainage (HAND), and SAR imaging parameters such as shadow and layover conditions. It is here tested over an area that includes the so-called Metaponto Coastal Plain (MCP), in the Basilicata region (southern Italy), which is recurrently subject to floods. We illustrate the ability of our system to detect known (although not ground-truthed) and smaller, undocumented inundation events over large areas, and propose some consideration about its prospective use for contexts affected by similar events, over various land cover scenarios and climatic settings
    corecore