1,385 research outputs found

    J Fluorescence

    Get PDF
    The scope of this paper is to illustrate the need for an improved quality assurance in fluorometry. For this purpose, instrumental sources of error and their influences on the reliability and comparability of fluorescence data are highlighted for frequently used photoluminescence techniques ranging from conventional macro- and microfluorometry over fluorescence microscopy and flow cytometry to microarray technology as well as in vivo fluorescence imaging. Particularly, the need for and requirements on fluorescence standards for the characterization and performance validation of fluorescence instruments, to enhance the comparability of fluorescence data, and to enable quantitative fluorescence analysis are discussed. Special emphasis is dedicated to spectral fluorescence standards and fluorescence intensity standards

    A Double-Walled Tetrahedron with AgI 4 Vertices Binds Different Guests in Distinct Sites

    Get PDF
    A double-walled tetrahedral metal-organic cage assembled in solution from silver(I), 2-formyl-1,8-naphthyridine, halide, and a threefold-symmetric triamine. The AgI 4 X clusters at its vertices each bring together six naphthyridine-imine moieties, leading to a structure in which eight tritopic ligands bridge four clusters in an (AgI 4 X)4 L8 arrangement. Four ligands form an inner set of tetrahedron walls that are surrounded by the outer four. The cage has significant interior volume, and was observed to bind anionic guests. The structure also possesses external binding clefts, located at the edges of the cage, which bound small aromatic guests. Halide ions bound to the silver clusters were observed to exchange in a well-defined hierarchy, allowing modulation of the cavity volume. The principles uncovered here may allow for increasingly more sophisticated cages with silver-cluster vertex architectures, with post-assembly tuning of the interior cavity volume enabling targeted binding behavior

    The ineluctable requirement for the trans-iron elements molybdenum and/or tungsten in the origin of life

    Get PDF
    An evolutionary tree of key enzymes from the Complex-Iron-Sulfur-Molybdoenzyme (CISM) superfamily distinguishes “ancient” members, i.e. enzymes present already in the last universal common ancestor (LUCA) of prokaryotes, from more recently evolved subfamilies. The majority of the presented subfamilies and, as a consequence, the Molybdo-enzyme superfamily as a whole, appear to have existed in LUCA. The results are discussed with respect to the nature of bioenergetic substrates available to early life and to problems arising from the low solubility of molybdenum under conditions of the primordial Earth

    A fresh look at the evolution and diversification of photochemical reaction centers

    Get PDF
    In this review, I reexamine the origin and diversification of photochemical reaction centers based on the known phylogenetic relations of the core subunits, and with the aid of sequence and structural alignments. I show, for example, that the protein folds at the C-terminus of the D1 and D2 subunits of Photosystem II, which are essential for the coordination of the water-oxidizing complex, were already in place in the most ancestral Type II reaction center subunit. I then evaluate the evolution of reaction centers in the context of the rise and expansion of the different groups of bacteria based on recent large-scale phylogenetic analyses. I find that the Heliobacteriaceae family of Firmicutes appears to be the earliest branching of the known groups of phototrophic bacteria; however, the origin of photochemical reaction centers and chlorophyll synthesis cannot be placed in this group. Moreover, it becomes evident that the Acidobacteria and the Proteobacteria shared a more recent common phototrophic ancestor, and this is also likely for the Chloroflexi and the Cyanobacteria. Finally, I argue that the discrepancies among the phylogenies of the reaction center proteins, chlorophyll synthesis enzymes, and the species tree of bacteria are best explained if both types of photochemical reaction centers evolved before the diversification of the known phyla of phototrophic bacteria. The primordial phototrophic ancestor must have had both Type I and Type II reaction centers

    Help-Seeking Behavior during Elevated Temperature in Chinese Population

    Get PDF
    The negative impact of extreme temperatures on health is well-established. Individual help-seeking behavior, however, may mitigate the extent of morbidity and mortality during elevated temperatures. This study examines individual help-seeking behavior during periods of elevated temperatures among a Chinese population. Help-seeking patterns and factors that influence behavior will be identified so that vulnerable subgroups may be targeted for health protection during heat crises. A retrospective time-series Poisson generalized additive model analysis, using meteorological data of Hong Kong Observatory and routine emergency help call data from The Hong Kong Senior Citizen Home Safety Association during warm seasons (June–September) 1998–2007, was conducted. A “U”-shaped association was found between daily emergency calls and daily temperature. About 49% of calls were for explicit health-related reasons including dizziness, shortness of breath, and general pain. The associate with maximum temperature was statistically significant (p = 0.034) with the threshold temperature at which the frequency of health-related calls started to increase being around 30–32°C. Mean daily relative humidity (RH) also had a significant U-shaped association with daily emergency health-related calls with call frequency beginning to increase with RH greater than 70–74% (10–25% of the RH distribution). Call frequency among females appeared to be more sensitive to high temperatures, with a threshold between 28.5°C and 30.5°C while calls among males were more sensitive to cold temperatures (threshold 31.5–33.5°C). Results indicate differences in community help-seeking behavior at elevated temperatures. Potential programs or community outreach services might be developed to protect vulnerable subgroups from the adverse impact of elevated temperatures

    Signal transduction in a covalent post-assembly modification cascade

    Get PDF
    Natural reaction cascades control the movement of biomolecules between cellular compartments. Inspired by these systems, we report a synthetic reaction cascade employing post-assembly modification reactions to direct the partitioning of supramolecular complexes between phases. The system is composed of a self-assembled tetrazine-edged FeII8L12 cube and a maleimide-functionalized FeII4L6 tetrahedron. Norbornadiene (NBD) functions as the stimulus that triggers the cascade, beginning with the inverse-electron-demand Diels–Alder reaction of NBD with the tetrazine moieties of the cube. This reaction generates cyclopentadiene as a transient by-product, acting as a relay signal that subsequently undergoes a Diels–Alder reaction with the maleimide-functionalized tetrahedron. Cyclooctyne can selectively inhibit the cascade by outcompeting NBD as the initial trigger. Initiating the cascade with 2-octadecyl NBD leads to selective alkylation of the tetrahedron upon cascade completion. The increased lipophilicity of the C18-tagged tetrahedron drives this complex into a non-polar phase, allowing its isolation from the initially inseparable mixture of complexes
    • 

    corecore