2,493 research outputs found

    Thermo-acoustic wave propagation and reflection near the liquid-gas critical point

    Full text link
    We study the thermo-acoustic wave propagation and reflection near the liquid-gas critical point. Specifically, we perform a numerical investigation of the acoustic responses in a near-critical fluid to thermal perturbations based on the same setup of a recent ultrasensitive interferometry measurement in CO2 [Y. Miura et al. Phys. Rev. E 74, 010101(R) (2006)]. The numerical results agree well with the experimental data. New features regarding the reflection pattern of thermo-acoustic waves near the critical point under pulse perturbations are revealed by the proper inclusion of the critically diverging bulk viscosity.Comment: 14 pages, 4 figures, Accepted by PRE (Rapid Communication

    Elliptic Phases: A Study of the Nonlinear Elasticity of Twist-Grain Boundaries

    Full text link
    We develop an explicit and tractable representation of a twist-grain-boundary phase of a smectic A liquid crystal. This allows us to calculate the interaction energy between grain boundaries and the relative contributions from the bending and compression deformations. We discuss the special stability of the 90 degree grain boundaries and discuss the relation of this structure to the Schwarz D surface.Comment: 4 pages, 2 figure

    Technological and Organisational Readiness in the Age of Data-Driven Decision Making : A Manufacturing Perspective

    Get PDF
    This paper is concerned with the changes brought about by digital transformation, which impact society and businesses as well as individuals. These changes also influence manufacturing organisations as decision-making processes are automated and increasingly driven by data analysis. The aim of this research paper is to discuss and analyse technological and organisational readiness in manufacturing. The main areas of focus are Big Data Analytics, Artificial Intelligence in collaboration processes, and the role of the human in future manufacturing organisations

    Site-selective tagging of proteins by pnictogen-mediated self-assembly

    Get PDF
    Site-selective chemical protein modification is achieved by self-assembly of a specific di-cysteine motif, trivalent pnictogens (As, Sb or Bi) and an aromatic mercaptomethyl-based probe. The strategy is demonstrated with a quaternary complex involving Zika virus protease and a lanthanide ion, enabling paramagnetic nuclear magnetic resonance spectroscopy and luminescence measurements.Financial support by the Australian Research Council is gratefully acknowledge

    Direct-current-dependent shift of theta-burst-induced plasticity in the human motor cortex

    Get PDF
    Animal studies using polarising currents have shown that induction of synaptic long-term potentiation (LTP) and long-term depression (LTD) by bursts of patterned stimulation is affected by the membrane potential of the postsynaptic neurone. The aim of the present experiments was to test whether it is possible to observe similar phenomena in humans with the aim of improving present protocols of inducing synaptic plasticity for therapeutic purposes. We tested whether the LTP/LTD-like after effects of transcranial theta-burst stimulation (TBS) of human motor cortex, an analogue of patterned electrical stimulation in animals, were affected by simultaneous transcranial direct-current stimulation (tDCS), a non-invasive method of polarising cortical neurones in humans. Nine healthy volunteers were investigated in a single-blind, balanced cross-over study; continuous TBS (cTBS) was used to introduce LTD-like after effects, whereas intermittent TBS (iTBS) produced LTP-like effects. Each pattern was coupled with concurrent application of tDCS (<200 s, anodal, cathodal, sham). Cathodal tDCS increased the response to iTBS and abolished the effects of cTBS. Anodal tDCS changed the effects of cTBS towards facilitation, but had no impact on iTBS. Cortical motor thresholds and intracortical inhibitory/facilitatory networks were not altered by any of the stimulation protocols. We conclude that the after effects of TBS can be modulated by concurrent tDCS. We hypothesise that tDCS changes the membrane potential of the apical dendrites of cortical pyramidal neurones and that this changes the response to patterned synaptic input evoked by TBS. The data show that it may be possible to enhance LTP-like plasticity after TBS in the human cortex

    Gaussian approximation for finitely extensible bead-spring chains with hydrodynamic interaction

    Full text link
    The Gaussian Approximation, proposed originally by Ottinger [J. Chem. Phys., 90 (1) : 463-473, 1989] to account for the influence of fluctuations in hydrodynamic interactions in Rouse chains, is adapted here to derive a new mean-field approximation for the FENE spring force. This "FENE-PG" force law approximately accounts for spring-force fluctuations, which are neglected in the widely used FENE-P approximation. The Gaussian Approximation for hydrodynamic interactions is combined with the FENE-P and FENE-PG spring force approximations to obtain approximate models for finitely-extensible bead-spring chains with hydrodynamic interactions. The closed set of ODE's governing the evolution of the second-moments of the configurational probability distribution in the approximate models are used to generate predictions of rheological properties in steady and unsteady shear and uniaxial extensional flows, which are found to be in good agreement with the exact results obtained with Brownian dynamics simulations. In particular, predictions of coil-stretch hysteresis are in quantitative agreement with simulations' results. Additional simplifying diagonalization-of-normal-modes assumptions are found to lead to considerable savings in computation time, without significant loss in accuracy.Comment: 26 pages, 17 figures, 2 tables, 75 numbered equations, 1 appendix with 10 numbered equations Submitted to J. Chem. Phys. on 6 February 200

    Experimental and numerical results of active flow control on a highly loaded stator cascade

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.This article presents experimental and numerical results for a compressor cascade with active flow control. Steady and pulsed blowing has been used to control the secondary flow and separation characteristics of a highly loaded controlled diffusion airfoil. Investigations were performed at the design incidence for blowing ratios from approximately 0.7 to 3.0 (jet-to-inlet velocity) and a Reynolds number of 840 000 (based on axial chord and inlet velocity). Detailed flow field data were collected using a five-hole pressure probe, pressure taps on the blade surfaces, and time-resolved Particle Image Velocimetry. Unsteady Reynolds-averaged Navier–Stokes simulations were performed for a wide range of flow control parameters. The experimental and numerical results are used to understand the interaction between the jet and the passage flow. The benefit of the flow control on the cascade performance is weighted against the costs of the actuation by introducing an efficiency which takes the presence of the jets into account.DFG, SFB 557, Beeinflussung komplexer turbulenter Scherströmunge

    Minimal Surfaces, Screw Dislocations and Twist Grain Boundaries

    Full text link
    Large twist-angle grain boundaries in layered structures are often described by Scherk's first surface whereas small twist-angle grain boundaries are usually described in terms of an array of screw dislocations. We show that there is no essential distinction between these two descriptions and that, in particular, their comparative energetics depends crucially on the core structure of their screw-dislocation topological defects.Comment: 10 pages, harvmac, 1 included postscript figure, final versio

    Wetting and Minimal Surfaces

    Get PDF
    We study minimal surfaces which arise in wetting and capillarity phenomena. Using conformal coordinates, we reduce the problem to a set of coupled boundary equations for the contact line of the fluid surface, and then derive simple diagrammatic rules to calculate the non-linear corrections to the Joanny-de Gennes energy. We argue that perturbation theory is quasi-local, i.e. that all geometric length scales of the fluid container decouple from the short-wavelength deformations of the contact line. This is illustrated by a calculation of the linearized interaction between contact lines on two opposite parallel walls. We present a simple algorithm to compute the minimal surface and its energy based on these ideas. We also point out the intriguing singularities that arise in the Legendre transformation from the pure Dirichlet to the mixed Dirichlet-Neumann problem.Comment: 22 page
    • …
    corecore