3 research outputs found

    An associative analysis of recognition memory: Relative recency effects in an eye-tracking paradigm

    Get PDF
    We report 2 eye-tracking experiments with human variants of 2 rodent recognition memory tasks, relative recency and object-in-place. In Experiment 1 participants were sequentially exposed to 2 images, A then B, presented on a computer display. When subsequently tested with both images, participants biased looking toward the first-presented image A: the relative recency effect. When contextual stimuli x and y, respectively, accompanied A and B in the exposure phase (xA,yB), the recency effect was greater when y was present at test, than when x was present. In Experiment 2 participants viewed 2 identical presentations of a 4-image array, ABCD, followed by a test with the same array, but in which one of thepairs of stimuli exchanged position (BACD orABDC). Participants looked preferentially at the displaced stimulus pair: the object-in-place effect. Three further conditions replicated Experiment 1’s findings: 2 pairs of images were presented one after the other (AB followed by CD); on a test with AB and CD,relative recency was again evident as preferential looking at AB. Moreover, this effect was greater when the positions of the first-presented A and B were exchanged between exposure and test (BACD), compared with when the positions of second-presented C and D were exchanged (ABDC). The results were interpreted within the theoretical framework of the Sometime Opponent Process model of associative learning (Wagner, 1981)

    Flags Stimulus

    No full text

    Dissociation between the neural correlates of conscious face perception and visual attention.

    Full text link
    Given the higher chance to recognize attended compared to unattended stimuli, the specific neural correlates of these two processes, attention and awareness, tend to be intermingled in experimental designs. In this study, we dissociated the neural correlates of conscious face perception from the effects of visual attention. To do this, we presented faces at the threshold of awareness and manipulated attention through the use of exogenous prestimulus cues. We show that the N170 component, a scalp EEG marker of face perception, was modulated independently by attention and by awareness. An earlier P1 component was not modulated by either of the two effects and a later P3 component was indicative of awareness but not of attention. These claims are supported by converging evidence from (a) modulations observed in the average evoked potentials, (b) correlations between neural and behavioral data at the single-subject level, and (c) single-trial analyses. Overall, our results show a clear dissociation between the neural substrates of attention and awareness. Based on these results, we argue that conscious face perception is triggered by a boost in face-selective cortical ensembles that can be modulated by, but are still independent from, visual attention
    corecore