260 research outputs found

    Multi-Scale Modeling of Dynamic Recrystallization in Metals Undergoing Thermo-Mechanical Processing

    Get PDF
    This study focuses on devising a unified multi-scale numerical framework to predict the grain size evolution by dynamic recrystallization in metals and alloys for an array of severe plastic thermo-mechanical deformation conditions. The model is developed to predict the temporal and spatial grain size evolution of the material subjected to high strain rate and temperature dependent deformation. Dynamic recrystallization evolves by either a continuous grain refinement mechanism around room temperatures or by a discontinuous grain nucleation and growth mechanism at elevated temperatures. The multi-scale model bridges a dislocation density-based constitutive framework with microscale physics-based recrystallization laws to predict both the types of recrystallization phenomena simultaneously. The simulations are conducted within an integrated probabilistic cellular automata-finite element framework to capture the physics of the recrystallization mechanisms. High strain rate loading experiments in conjunction with microstructural characterization tests are conducted for pure copper to characterize the dynamic grain size evolution in the material and evaluated against the model predictions. Synchrotron X-rays are integrated with a modified Kolsky tension bar to conduct in situ temporal characterization of the grain refinement mechanism operating during the dynamic deformation of copper and evaluated against the developed model kinetics. Finally, the model is implemented to predict the grain size evolution developed during the friction stir spot welding of Al 6061-T6 for varying tool rotational speeds. The experiments show that the original microstructure is completely replaced by a recrystallized fine-grained microstructure with the final average grain size and morphology dependent on the process parameters. The model accurately predicts the process temperature rise with increasing tool rotational speeds, which results in a higher rate of grain coarsening during the dynamic recrystallization phenomenon

    Multi-Scale Modeling of Dynamic Recrystallization in Metals Undergoing Thermo-Mechanical Processing

    Get PDF
    This study focuses on devising a unified multi-scale numerical framework to predict the grain size evolution by dynamic recrystallization in metals and alloys for an array of severe plastic thermo-mechanical deformation conditions. The model is developed to predict the temporal and spatial grain size evolution of the material subjected to high strain rate and temperature dependent deformation. Dynamic recrystallization evolves by either a continuous grain refinement mechanism around room temperatures or by a discontinuous grain nucleation and growth mechanism at elevated temperatures. The multi-scale model bridges a dislocation density-based constitutive framework with microscale physics-based recrystallization laws to predict both the types of recrystallization phenomena simultaneously. The simulations are conducted within an integrated probabilistic cellular automata-finite element framework to capture the physics of the recrystallization mechanisms. High strain rate loading experiments in conjunction with microstructural characterization tests are conducted for pure copper to characterize the dynamic grain size evolution in the material and evaluated against the model predictions. Synchrotron X-rays are integrated with a modified Kolsky tension bar to conduct in situ temporal characterization of the grain refinement mechanism operating during the dynamic deformation of copper and evaluated against the developed model kinetics. Finally, the model is implemented to predict the grain size evolution developed during the friction stir spot welding of Al 6061-T6 for varying tool rotational speeds. The experiments show that the original microstructure is completely replaced by a recrystallized fine-grained microstructure with the final average grain size and morphology dependent on the process parameters. The model accurately predicts the process temperature rise with increasing tool rotational speeds, which results in a higher rate of grain coarsening during the dynamic recrystallization phenomenon

    Research options for controlling Zoonotic disease in India, 2010-2015

    Get PDF
    BACKGROUND: Zoonotic infections pose a significant public health challenge for low- and middle-income countries and have traditionally been a neglected area of research. The Roadmap to Combat Zoonoses in India (RCZI) initiative conducted an exercise to systematically identify and prioritize research options needed to control zoonoses in India. METHODS AND FINDINGS: Priority setting methods developed by the Child Health and Nutrition Research Initiative were adapted for the diversity of sectors, disciplines, diseases and populations relevant for zoonoses in India. A multidisciplinary group of experts identified priority zoonotic diseases and knowledge gaps and proposed research options to address key knowledge gaps within the next five years. Each option was scored using predefined criteria by another group of experts. The scores were weighted using relative ranks among the criteria based upon the feedback of a larger reference group. We categorized each research option by type of research, disease targeted, factorials, and level of collaboration required. We analysed the research options by tabulating them along these categories. Seventeen experts generated four universal research themes and 103 specific research options, the majority of which required a high to medium level of collaboration across sectors. Research options designated as pertaining to 'social, political and economic' factorials predominated and scored higher than options focussing on ecological, genetic and biological, or environmental factors. Research options related to 'health policy and systems' scored highest while those related to 'research for development of new interventions' scored the lowest. CONCLUSIONS: We methodically identified research themes and specific research options incorporating perspectives of a diverse group of stakeholders. These outputs reflect the diverse nature of challenges posed by zoonoses and should be acceptable across diseases, disciplines, and sectors. The identified research options capture the need for 'actionable research' for advancing the prevention and control of zoonoses in India

    Laparoscopic bilateral gonadectomy in a case of turner syndrome with 45XO/46XY genotype

    Get PDF
    Turner syndrome is one of the common chromosomal aberrations which manifests in a female as multiple phenotypic disorders usually presenting as a case of primary amenorrhea. Many of these patients display mosaicism on karyotyping and a presence of Y chromosomal material indicates high risk of gonadoblastoma and gonadectomy is indicated which is best achieved by laparoscopy. This is a case of 21-year-old female phenotype referred as a case of primary amenorrhea diagnosed as Turner syndrome with 46XY mosaicism. Laparoscopic bilateral salpingoophorectomy was done. In patients of primary amenorrhea karyotyping should be evaluated and if Y chromosome detected these patients should be subjected to gonadectomy after proper risk counselling about malignancy

    Laparoscopic management of heterotopic pregnancy in an IVF conception

    Get PDF
    Heterotopic Pregnancy cases are on the rise in the era of Artificial Reproductive Techniques and managing these pregnancies can be challenging especially in safeguarding the precious intrauterine pregnancy. These were traditionally managed by laparotomy and there are few cases reported wherein salpingectomy is done laparoscopically. We would like to report this case of a 7 weeks intrauterine pregnancy with 5 weeks tubal ectopic treated by laparoscopic salpingectomy under spinal anaesthesia while safeguarding the intrauterine viable gestation. In the light of increased incidence of abnormal implantations and growing demand and expertise of minimally invasive surgeries, laparoscopy is the treatment of choice for heterotopic pregnancies, especially in the interest of the intrauterine pregnancy
    • …
    corecore