653 research outputs found

    Spatial Evidence for Transition Radiation in a Solar Radio Burst

    Full text link
    Microturbulence, i.e. enhanced fluctuations of plasma density, electric and magnetic fields, is of great interest in astrophysical plasmas, but occurs on spatial scales far too small to resolve by remote sensing, e.g., at ~ 1-100 cm in the solar corona. This paper reports spatially resolved observations that offer strong support for the presence in solar flares of a suspected radio emission mechanism, resonant transition radiation, which is tightly coupled to the level of microturbulence and provides direct diagnostics of the existence and level of fluctuations on decimeter spatial scales. Although the level of the microturbulence derived from the radio data is not particularly high, /n^2 ~ 10^{-5}$, it is large enough to affect the charged particle diffusion and give rise to effective stochastic acceleration. This finding has exceptionally broad astrophysical implications since modern sophisticated numerical models predict generation of much stronger turbulence in relativistic objects, e.g., in gamma-ray burst sources.Comment: 13 pages, 4 figures, ApJL accepte

    An efficient method for maximal area coverage in the context of a hierarchical controller for multiple unmanned aerial vehicles

    Get PDF
    Computing the exact area of the union of an arbitrary number of circles is a challenging problem, since the union is generally non-convex and may be composed of multiple non-overlapping regions. In this paper, we propose tackling this problem by using graph-theoretical concepts and Green’s Theorem for exact area computation. Moreover, we show the implementation of this method for a rapid area coverage application with unmanned aerial vehicles (UAVs). Maximizing the area covered using multiple agents is difficult because fast solutions to large-scale optimization problems are sought. In our solution method, we present a hierarchical control framework. On the upper layer, a high-level controller performs centralised computation to determine the optimal UAV locations to maximize the area covered. On the bottom level, we adopt a decentralised approach by implementing multiple local controllers to tackle the trajectory planning and collision avoidance for each agent individually using Nonlinear Model Predictive Control (NMPC). Numerical experiments show that our method for computing the covered area can reduce the computational time required to solve the optimal positioning problem by more than two orders of magnitude when compared to a Monte-Carlo method. The trajectory planning problem was tested for up to 13 agents and the run-time was on the order of milliseconds, demonstrating the suitability for real-time implementation of the presented framework

    Fast and accurate method for computing non-smooth solutions to constrained control problems

    Get PDF
    Introducing flexibility in the time-discretisation mesh can improve convergence and computational time when solving differential equations numerically, particularly when the solutions are discontinuous, as commonly found in control problems with constraints. State-of-the-art methods use fixed mesh schemes, which cannot achieve superlinear convergence in the presence of non-smooth solutions. In this paper, we propose using a flexible mesh in an integrated residual method. The locations of the mesh nodes are introduced as decision variables, and constraints are added to set upper and lower bounds on the size of the mesh intervals. We compare our approach to a uniform fixed mesh on a real-world satellite reorientation example. This example demonstrates that the flexible mesh enables the solver to automatically locate the discontinuities in the solution, has superlinear convergence and faster solve time

    Dislocation loops in overheated free-standing smectic films

    Full text link
    Static and dynamic phenomena in overheated free-standing smectic-A films are studied using a generalization of de Gennes' theory for a confined presmectic liquid. A static application is to determine the profile of the film meniscus and the meniscus contact angle, the results being compared with those of a recent study employing de Gennes' original theory. The dynamical generalization of the theory is based on on a time-dependent Ginzburg-Landau approach. This is used to compare two modes for layer-thinning transitions in overheated films, namely "uniform thinning" vs. nucleation of dislocation loops. Properties such as the line tension and velocity of a moving dislocation line are evaluated self-consistently by the theory.Comment: 16 pages, 8 figure

    Management of duodenal stump fistula after gastrectomy for malignant disease: A systematic review of the literature

    Get PDF
    Background: Duodenal stump fistula (DSF) remains one of the most serious complications following subtotal or total gastrectomy, as it endangers patient's life. DSF is related to high mortality (16-20%) and morbidity (75%) rates. DSF-related morbidity always leads to longer hospitalization times due to medical and surgical complications such as wound infections, intra-abdominal abscesses, intra-abdominal bleeding, acute pancreatitis, acute cholecystitis, severe malnutrition, fluids and electrolytes disorders, diffuse peritonitis, and pneumonia. Our systematic review aimed at improving our understanding of such surgical complication, focusing on nonsurgical and surgical DSF management in patients undergoing gastric resection for gastric cancer. Methods: We performed a systematic literature review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyzes (PRISMA) guidelines. PubMed/MEDLINE, EMBASE, Scopus, Cochrane Library and Web of Science databases were used to search all related literature. Results: The 20 included articles covered an approximately 40 years-study period (1979-2017), with a total 294 patient population. DSF diagnosis occurred between the fifth and tenth postoperative day. Main DSF-related complications were sepsis, abdominal abscess, wound infection, pneumonia, and intra-abdominal bleeding. DSF treatment was divided into four categories: conservative (101 cases), endoscopic (4 cases), percutaneous (82 cases), and surgical (157 cases). Length of hospitalization was 21-39 days, ranging from 1 to 1035 days. Healing time was 19-63 days, ranging from 1 to 1035 days. DSF-related mortality rate recorded 18.7%. Conclusions: DSF is a rare but potentially lethal complication after gastrectomy for gastric cancer. Early DSF diagnosis is crucial in reducing DSF-related morbidity and mortality. Conservative and/or endoscopic/percutaneous treatments is/are the first choice. However, if the patient clinical condition worsens, surgery becomes mandatory and duodenostomy appears to be the most effective surgical procedure

    Rise and shine: The use of polychromatic short-wavelength-enriched light to mitigate sleep inertia at night following awakening from slow-wave sleep

    Get PDF
    Sleep inertia is the brief period of performance impairment and reduced alertness experienced after waking, especially from slow-wave sleep. We assessed the efficacy of polychromatic short-wavelength-enriched light to improve vigilant attention, alertness and mood immediately after waking from slow-wave sleep at night. Twelve participants (six female, 23.3 ± 4.2 years) maintained an actigraphy-confirmed sleep schedule of 8.5 hr for 5 nights, and 5 hr for 1 night prior to an overnight laboratory visit. In the laboratory, participants were awakened from slow-wave sleep, and immediately exposed to either dim, red ambient light (control) or polychromatic short-wavelength-enriched light (light) for 1 hr in a randomized crossover design. They completed a 5-min Psychomotor Vigilance Task, the Karolinska Sleepiness Scale, and Visual Analogue Scales of mood at 2, 17, 32 and 47 min after waking. Following this testing period, lights were turned off and participants returned to sleep. They were awakened from their subsequent slow-wave sleep period and received the opposite condition. Compared with the control condition, participants exposed to light had fewer Psychomotor Vigilance Task lapses (χ2[1] = 5.285, p = 0.022), reported feeling more alert (Karolinska Sleepiness Scale: F1,77 = 4.955, p = 0.029; Visual Analogue Scalealert: F1,77 = 8.226, p = 0.005), and reported improved mood (Visual Analogue Scalecheerful: F1,77 = 8.615, p = 0.004). There was no significant difference in sleep-onset latency between conditions following the testing period (t10 = 1.024, p = 0.330). Our results suggest that exposure to polychromatic short-wavelength-enriched light immediately after waking from slow-wave sleep at night may help improve vigilant attention, subjective alertness, and mood. Future studies should explore the potential mechanisms of this countermeasure and its efficacy in real-world environments

    Patterns of multimorbidity and risk of severe SARS-CoV-2 infection: an observational study in the U.K.

    Get PDF
    Funder: National Institute for Health Research; Grant(s): Biomedical Research Centre Cambridge: Nutrition, Diet, and Lifestyle Research Theme (IS-BRC-1215-20014), NIHR Applied Research Collaboration East Midlands (ARC EM), NIHR Leicester Biomedical Research CentreBackgroundPre-existing comorbidities have been linked to SARS-CoV-2 infection but evidence is sparse on the importance and pattern of multimorbidity (2 or more conditions) and severity of infection indicated by hospitalisation or mortality. We aimed to use a multimorbidity index developed specifically for COVID-19 to investigate the association between multimorbidity and risk of severe SARS-CoV-2 infection.MethodsWe used data from the UK Biobank linked to laboratory confirmed test results for SARS-CoV-2 infection and mortality data from Public Health England between March 16 and July 26, 2020. By reviewing the current literature on COVID-19 we derived a multimorbidity index including: (1) angina; (2) asthma; (3) atrial fibrillation; (4) cancer; (5) chronic kidney disease; (6) chronic obstructive pulmonary disease; (7) diabetes mellitus; (8) heart failure; (9) hypertension; (10) myocardial infarction; (11) peripheral vascular disease; (12) stroke. Adjusted logistic regression models were used to assess the association between multimorbidity and risk of severe SARS-CoV-2 infection (hospitalisation/death). Potential effect modifiers of the association were assessed: age, sex, ethnicity, deprivation, smoking status, body mass index, air pollution, 25-hydroxyvitamin D, cardiorespiratory fitness, high sensitivity C-reactive protein.ResultsAmong 360,283 participants, the median age was 68 [range 48-85] years, most were White (94.5%), and 1706 had severe SARS-CoV-2 infection. The prevalence of multimorbidity was more than double in those with severe SARS-CoV-2 infection (25%) compared to those without (11%), and clusters of several multimorbidities were more common in those with severe SARS-CoV-2 infection. The most common clusters with severe SARS-CoV-2 infection were stroke with hypertension (79% of those with stroke had hypertension); diabetes and hypertension (72%); and chronic kidney disease and hypertension (68%). Multimorbidity was independently associated with a greater risk of severe SARS-CoV-2 infection (adjusted odds ratio 1.91 [95% confidence interval 1.70, 2.15] compared to no multimorbidity). The risk remained consistent across potential effect modifiers, except for greater risk among older age. The highest risk of severe infection was strongly evidenced in those with CKD and diabetes (4.93 [95% CI 3.36, 7.22]).ConclusionThe multimorbidity index may help identify individuals at higher risk for severe COVID-19 outcomes and provide guidance for tailoring effective treatment

    Modulation of the nucleation rate pre-exponential in a low-temperature Ising system

    Full text link
    A metastable lattice gas with nearest-neighbor interactions and continuous-time dynamics is studied using a generalized Becker-Doring approach in the multidimensional space of cluster configurations. The pre-exponential of the metastable state lifetime (inverse of nucleation rate) is found to exhibit distinct peaks at integer values of the inverse supersaturation. Peaks are unobservable (infinitely narrow) in the strict limit T->0, but become detectable and eventually dominate at higher temperatures.Comment: 4 pages, 2 Postscript figures, LaTeX, submitted to Phys. Rev. Lett. Changes: updated references, re-written section around eqs.(5),(6), typos, minor wording changes in conclusion and other parts of text (mostly in response to referees' comments). Paper resubmitted to PR
    corecore