147 research outputs found

    Metabotropic Glutamate Receptor 7: A New Therapeutic Target in Neurodevelopmental Disorders

    Get PDF
    Neurodevelopmental disorders (NDDs) are characterized by a wide range of symptoms including delayed speech, intellectual disability, motor dysfunction, social deficits, breathing problems, structural abnormalities, and epilepsy. Unfortunately, current treatment strategies are limited and innovative new approaches are sorely needed to address these complex diseases. The metabotropic glutamate receptors are a class of G protein-coupled receptors that act to modulate neurotransmission across many brain structures. They have shown great promise as drug targets for numerous neurological and psychiatric diseases. Moreover, the development of subtype-selective allosteric modulators has allowed detailed studies of each receptor subtype. Here, we focus on the metabotropic glutamate receptor 7 (mGlu7) as a potential therapeutic target for NDDs. mGlu7 is expressed widely throughout the brain in regions that correspond to the symptom domains listed above and has established roles in synaptic physiology and behavior. Single nucleotide polymorphisms and mutations in the GRM7 gene have been associated with idiopathic autism and other NDDs in patients. In rodent models, existing literature suggests that decreased mGlu7 expression and/or function may lead to symptoms that overlap with those of NDDs. Furthermore, potentiation of mGlu7 activity has shown efficacy in a mouse model of Rett syndrome. In this review, we summarize current findings that provide rationale for the continued development of mGlu7 modulators as potential therapeutics

    Metabotropic glutamate receptors in GtoPdb v.2023.1

    Get PDF
    Metabotropic glutamate (mGlu) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Metabotropic Glutamate Receptors [351]) are a family of G protein-coupled receptors activated by the neurotransmitter glutamate [140]. The mGlu family is composed of eight members (named mGlu1 to mGlu8) which are divided in three groups based on similarities of agonist pharmacology, primary sequence and G protein coupling to effector: Group-I (mGlu1 and mGlu5), Group-II (mGlu2 and mGlu3) and Group-III (mGlu4, mGlu6, mGlu7 and mGlu8) (see Further reading).Structurally, mGlu are composed of three juxtaposed domains: a core G protein-activating seven-transmembrane domain (TM), common to all GPCRs, is linked via a rigid cysteine-rich domain (CRD) to the Venus Flytrap domain (VFTD), a large bi-lobed extracellular domain where glutamate binds. mGlu form constitutive dimers, cross-linked by a disulfide bridge. The structures of the VFTD of mGlu1, mGlu2, mGlu3, mGlu5 and mGlu7 have been solved [200, 275, 268, 403]. The structure of the 7 transmembrane (TM) domains of both mGlu1 and mGlu5 have been solved, and confirm a general helical organisation similar to that of other GPCRs, although the helices appear more compacted [88, 433, 62]. Recent advances in cryo-electron microscopy have provided structures of full-length mGlu receptor homodimers [217, 191] and heterodimers [91]. Studies have revealed the possible formation of heterodimers between either group-I receptors, or within and between group-II and -III receptors [89]. First characterised in transfected cells, co-localisation and specific pharmacological properties suggest the existence of such heterodimers in the brain [270, 440, 145, 283, 259, 218]. Beyond heteromerisation with other mGlu receptor subtypes, increasing evidence suggests mGlu receptors form heteromers and larger order complexes with class A GPCRs (reviewed in [140]). The endogenous ligands of mGlu are L-glutamic acid, L-serine-O-phosphate, N-acetylaspartylglutamate (NAAG) and L-cysteine sulphinic acid. Group-I mGlu receptors may be activated by 3,5-DHPG and (S)-3HPG [30] and antagonised by (S)-hexylhomoibotenic acid [235]. Group-II mGlu receptors may be activated by LY389795 [269], LY379268 [269], eglumegad [354, 434], DCG-IV and (2R,3R)-APDC [355], and antagonised by eGlu [170] and LY307452 [425, 105]. Group-III mGlu receptors may be activated by L-AP4 and (R,S)-4-PPG [130]. An example of an antagonist selective for mGlu receptors is LY341495, which blocks mGlu2 and mGlu3 at low nanomolar concentrations, mGlu8 at high nanomolar concentrations, and mGlu4, mGlu5, and mGlu7 in the micromolar range [185]. In addition to orthosteric ligands that directly interact with the glutamate recognition site, allosteric modulators that bind within the TM domain have been described. Negative allosteric modulators are listed separately. The positive allosteric modulators most often act as ‘potentiators’ of an orthosteric agonist response, without significantly activating the receptor in the absence of agonist

    Metabotropic glutamate receptors in GtoPdb v.2021.3

    Get PDF
    Metabotropic glutamate (mGlu) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Metabotropic Glutamate Receptors [347]) are a family of G protein-coupled receptors activated by the neurotransmitter glutamate [138]. The mGlu family is composed of eight members (named mGlu1 to mGlu8) which are divided in three groups based on similarities of agonist pharmacology, primary sequence and G protein coupling to effector: Group-I (mGlu1 and mGlu5), Group-II (mGlu2 and mGlu3) and Group-III (mGlu4, mGlu6, mGlu7 and mGlu8) (see Further reading).Structurally, mGlu are composed of three juxtaposed domains: a core G protein-activating seven-transmembrane domain (TM), common to all GPCRs, is linked via a rigid cysteine-rich domain (CRD) to the Venus Flytrap domain (VFTD), a large bi-lobed extracellular domain where glutamate binds. mGlu form constitutive dimers, cross-linked by a disulfide bridge. The structures of the VFTD of mGlu1, mGlu2, mGlu3, mGlu5 and mGlu7 have been solved [198, 271, 264, 399]. The structure of the 7 transmembrane (TM) domains of both mGlu1 and mGlu5 have been solved, and confirm a general helical organization similar to that of other GPCRs, although the helices appear more compacted [87, 429, 61]. Recent advances in cryo-electron microscopy have provided structures of full-length mGlu receptor dimers [189]. Studies have revealed the possible formation of heterodimers between either group-I receptors, or within and between group-II and -III receptors [88]. First well characterized in transfected cells, co-localization and specific pharmacological properties also suggest the existence of such heterodimers in the brain [266].[436, 143, 279]. Beyond heteromerization with other mGlu receptor subtypes, increasing evidence suggests mGlu receptors form heteromers and larger order complexes with class A GPCRs (reviewed in [138]). The endogenous ligands of mGlu are L-glutamic acid, L-serine-O-phosphate, N-acetylaspartylglutamate (NAAG) and L-cysteine sulphinic acid. Group-I mGlu receptors may be activated by 3,5-DHPG and (S)-3HPG [30] and antagonized by (S)-hexylhomoibotenic acid [232]. Group-II mGlu receptors may be activated by LY389795 [265], LY379268 [265], eglumegad [350, 430], DCG-IV and (2R,3R)-APDC [351], and antagonised by eGlu [168] and LY307452 [421, 103]. Group-III mGlu receptors may be activated by L-AP4 and (R,S)-4-PPG [128]. An example of an antagonist selective for mGlu receptors is LY341495, which blocks mGlu2 and mGlu3 at low nanomolar concentrations, mGlu8 at high nanomolar concentrations, and mGlu4, mGlu5, and mGlu7 in the micromolar range [183]. In addition to orthosteric ligands that directly interact with the glutamate recognition site, allosteric modulators that bind within the TM domain have been described. Negative allosteric modulators are listed separately. The positive allosteric modulators most often act as ‘potentiators’ of an orthosteric agonist response, without significantly activating the receptor in the absence of agonist

    Cell-Type Specific Expression of a Dominant Negative PKA Mutation in Mice

    Get PDF
    We employed the Cre recombinase/loxP system to create a mouse line in which PKA activity can be inhibited in any cell-type that expresses Cre recombinase. The mouse line carries a mutant Prkar1a allele encoding a glycine to aspartate substitution at position 324 in the carboxy-terminal cAMP-binding domain (site B). This mutation produces a dominant negative RIα regulatory subunit (RIαB) and leads to inhibition of PKA activity. Insertion of a loxP-flanked neomycin cassette in the intron preceding the site B mutation prevents expression of the mutant RIαB allele until Cre-mediated excision of the cassette occurs. Embryonic stem cells expressing RIαB demonstrated a reduction in PKA activity and inhibition of cAMP-responsive gene expression. Mice expressing RIαB in hepatocytes exhibited reduced PKA activity, normal fasting induced gene expression, and enhanced glucose disposal. Activation of the RIαB allele in vivo provides a novel system for the analysis of PKA function in physiology

    Metabotropic glutamate receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Metabotropic glutamate (mGlu) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Metabotropic Glutamate Receptors [334]) are a family of G protein-coupled receptors activated by the neurotransmitter glutamate. The mGlu family is composed of eight members (named mGlu1 to mGlu8) which are divided in three groups based on similarities of agonist pharmacology, primary sequence and G protein coupling to effector: Group-I (mGlu1 and mGlu5), Group-II (mGlu2 and mGlu3) and Group-III (mGlu4, mGlu6, mGlu7 and mGlu8) (see Further reading).Structurally, mGlu are composed of three juxtaposed domains: a core G protein-activating seven-transmembrane domain (TM), common to all GPCRs, is linked via a rigid cysteine-rich domain (CRD) to the Venus Flytrap domain (VFTD), a large bi-lobed extracellular domain where glutamate binds. The structures of the VFTD of mGlu1, mGlu2, mGlu3, mGlu5 and mGlu7 have been solved [190, 262, 255, 386]. The structure of the 7 transmembrane (TM) domains of both mGlu1 and mGlu5 have been solved, and confirm a general helical organization similar to that of other GPCRs, although the helices appear more compacted [85, 415, 59]. mGlu form constitutive dimers crosslinked by a disulfide bridge. Recent studies revealed the possible formation of heterodimers between either group-I receptors, or within and between group-II and -III receptors [86]. Although well characterized in transfected cells, co-localization and specific pharmacological properties also suggest the existence of such heterodimers in the brain [422, 257]. The endogenous ligands of mGlu are L-glutamic acid, L-serine-O-phosphate, N-acetylaspartylglutamate (NAAG) and L-cysteine sulphinic acid. Group-I mGlu receptors may be activated by 3,5-DHPG and (S)-3HPG [29] and antagonized by (S)-hexylhomoibotenic acid [223]. Group-II mGlu receptors may be activated by LY389795 [256], LY379268 [256], eglumegad [337, 416], DCG-IV and (2R,3R)-APDC [338], and antagonised by eGlu [161] and LY307452 [408, 100]. Group-III mGlu receptors may be activated by L-AP4 and (R,S)-4-PPG [125]. An example of an antagonist selective for mGlu receptors is LY341495, which blocks mGlu2 and mGlu3 at low nanomolar concentrations, mGlu8 at high nanomolar concentrations, and mGlu4, mGlu5, and mGlu7 in the micromolar range [176]. In addition to orthosteric ligands that directly interact with the glutamate recognition site, allosteric modulators that bind within the TM domain have been described. Negative allosteric modulators are listed separately. The positive allosteric modulators most often act as 'potentiators' of an orthosteric agonist response, without significantly activating the receptor in the absence of agonist

    Positive allosteric modulators of the metabotropic glutamate receptor subtype 4 (mGluR4). Part II: Challenges in hit-to-lead

    No full text
    This Letter describes the synthesis and SAR of two mGluR4 positive allosteric modulator leads, 6 and 7. VU001171 (6) represents the most potent (EC(50) = 650 nM), efficacious (141% Glu Max) and largest fold shift (36-fold) of any mGluR4 PAM reported to date. However, this work highlights the challenges in hit-to-lead for mGluR4 PAMs, with multiple confirmed HTS hits displaying little or no tractable SAR
    • …
    corecore