9 research outputs found

    Gene Expression Patterns in Myelodyplasia Underline the Role of Apoptosis and Differentiation in Disease Initiation and Progression

    Get PDF
    The myelodysplastic syndromes (MDS) are clonal stem cell disorders, characterized by ineffective and dysplastic hematopoiesis. The genetic and epigenetic pathways that determine disease stage and progression are largely unknown. In the current study we used gene expression microarray methodology to examine the gene expression differences between normal hematopoietic cells and hematopoietic cells from patients with MDS at different disease stages, using both unselected and CD34+ selected cells. Significant differences between normal and MDS hematopoietic cells were observed for several genes and pathways. Several genes promoting or opposing apoptosis were dysregulated in MDS cases, most notably MCL1 and EPOR. Progression from RA to RAEB(T) was associated with increased expression of several histone genes. In addition, the RAR-RXR pathway, critical for maintaining a balance between self-renewal and differentiation of hematopoietic stem cells, was found to be deregulated in hematopoietic cells from patients with advanced MDS compared to patients with refractory anemia. These findings provide new insights into the understanding of the pathophysiology and progression of MDS, and may guide to new targets for therapy. Taken together with previous published data, the present results also underscore the considerable complexity of the regulation of gene expression in MDS

    Epidemiological study of tick infestation in buffalo of various regions of district Khairpur, Pakistan

    No full text
    Aim: The aim of this study was to determine the epidemiological infestation and identification of Ixodidae and Argasidae ticks species in buffalo of different parts of district Khairpur, Pakistan. Materials and Methods: A total of 720 Water buffaloes from three tehsils (subdivisions) were selected randomly and examined from organized and unorganized dairy farms for tick infestation in district Khairpur, Pakistan. This epidemiological survey was conducted during April to September 2015. Results: The overall mean population and preferred site of tick attachment to infested animals, in Gambat, Sobhodero, and Kot Diji tehsils, were observed on different body parts. The primary body area of infestation by ticks (head, thorax, abdomen, udder, and tail) ranged from highest in tail and udder part compared to lowest in the abdomen, head, and thorax. In all study areas, the infestation was higher (p<0.05) in tail and udder than other parts of the body. In all the study areas, the overall highest population was found in the month of July. In addition, we first time identify four new species of ticks (Hyalomma anatolicum, H. anatolicum excavatum, Hyalomma Ixodes excavatum, and Ixodes ricinus) in district Khairpur, Pakistan. Conclusion: Results of this study provide additional information of epidemiological tick infestation, and will be helpful for evolving effective control policy for the management of tick infestation in study district

    NF-κB and FLIP in arsenic trioxide (ATO)-induced apoptosis in myelodysplastic syndromes (MDSs)

    No full text
    Tumor necrosis factor (TNF)-α, a potent stimulus of nuclear factor-κB (NF-κB), is up-regulated in myelodysplastic syndrome (MDS). Here, we show that bone marrow mononuclear cells (BMMCs) and purified CD34+ cells from patients with low-grade/early-stage MDS (refractory anemia/refractory anemia with ring sideroblasts [RA/RARS]) have low levels of NF-κB activity in nuclear extracts comparable with normal marrow, while patients with RA with excess blasts (RAEB) show significantly increased levels of activity (P = .008). Exogenous TNF-α enhanced NF-κB nuclear translocation in MDS BMMCs above baseline levels. Treatment with arsenic trioxide (ATO; 2-200 μM) inhibited NF-κB activity in normal marrow, primary MDS, and ML1 cells, even in the presence of exogenous TNF-α (20 ng/mL), and down-regulated NF-κB-dependent antiapoptotic proteins, B-cell leukemia XL (Bcl-XL), Bcl-2, X-linked inhibitor of apoptosis (XIAP), and Fas-associated death domain (FADD)-like interleukin-1β-converting enzyme (FLICE) inhibitory protein (FLIP), leading to apoptosis. However, overexpression of FLIP resulted in increased NF-κB activity and rendered ML1 cells resistant to ATO-induced apoptosis. These data are consistent with the observed up-regulation of FLIP and resistance to apoptosis with advanced MDS, where ATO as a single agent may show only limited efficacy. However, the data also suggest that combinations of ATO with agents that interfere with other pathways, such as FLIP autoamplification via NF-κB, may have considerable therapeutic activity

    Tumour necrosis factor-induced gene expression in human marrow stroma: clues to the pathophysiology of MDS?

    No full text
    Aberrant regulation of the tumour necrosis factor alpha gene (TNF) and stroma-derived signals are involved in the pathophysiology of myelodysplasia. Therefore, KG1a, a myeloid leukaemia cell line, was exposed to Tnf in the absence or presence of either HS-5 or HS-27a cells, two human stroma cell lines. While KG1a cells were resistant to Tnf-induced apoptosis in the absence of stroma cells, Tnf-promoted apoptosis of KG1a cells in co-culture experiments with stroma cells. To investigate the Tnf-induced signals from the stroma cells, we examined expression changes in HS-5 and HS-27a cells after Tnf exposure. DNA microarray studies found both discordant and concordant Tnf-induced expression responses in the two stroma cell lines. Tnf promoted an increased mRNA expression of pro-inflammatory cytokines [e.g. interleukin (IL)6, IL8 and IL32]. At the same time, Tnf decreased the mRNA expression of anti-apoptotic genes (e.g. BCL2L1) and increased the mRNA expression of pro-apoptotic genes (e.g. BID). Overall, the results suggested that Tnf induced a complex set of pro-inflammatory and pro-apoptotic signals in stroma cells that promote apoptosis in malignant myeloid clones. Additional studies will be required to determine which of these signals are critical for the induction of apoptosis in the malignant clones. Those insights, in turn, may point the way to novel therapeutic approaches

    Publisher Correction: The DNA sequence and analysis of human chromosome 14.

    No full text

    The DNA sequence and analysis of human chromosome 14

    No full text
    corecore