29 research outputs found

    Self-Organized Formation of Polarized Cortical Tissues from ESCs and Its Active Manipulation by Extrinsic Signals

    Get PDF
    SummaryHere, we demonstrate self-organized formation of apico-basally polarized cortical tissues from ESCs using an efficient three-dimensional aggregation culture (SFEBq culture). The generated cortical neurons are functional, transplantable, and capable of forming proper long-range connections in vivo and in vitro. The regional identity of the generated pallial tissues can be selectively controlled (into olfactory bulb, rostral and caudal cortices, hem, and choroid plexus) by secreted patterning factors such as Fgf, Wnt, and BMP. In addition, the in vivo-mimicking birth order of distinct cortical neurons permits the selective generation of particular layer-specific neurons by timed induction of cell-cycle exit. Importantly, cortical tissues generated from mouse and human ESCs form a self-organized structure that includes four distinct zones (ventricular, early and late cortical-plate, and Cajal-Retzius cell zones) along the apico-basal direction. Thus, spatial and temporal aspects of early corticogenesis are recapitulated and can be manipulated in this ESC culture

    Self-Organization of Polarized Cerebellar Tissue in 3D Culture of Human Pluripotent Stem Cells

    Get PDF
    During cerebellar development, the main portion of the cerebellar plate neuroepithelium gives birth to Purkinje cells and interneurons, whereas the rhombic lip, the germinal zone at its dorsal edge, generates granule cells and cerebellar nuclei neurons. However, it remains elusive how these components cooperate to form the intricate cerebellar structure. Here, we found that a polarized cerebellar structure self-organizes in 3D human embryonic stem cell (ESC) culture. The self-organized neuroepithelium differentiates into electrophysiologically functional Purkinje cells. The addition of fibroblast growth factor 19 (FGF19) promotes spontaneous generation of dorsoventrally polarized neural-tube-like structures at the level of the cerebellum. Furthermore, addition of SDF1 and FGF19 promotes the generation of a continuous cerebellar plate neuroepithelium with rhombic-lip-like structure at one end and a three-layer cytoarchitecture similar to the embryonic cerebellum. Thus, human-ESC-derived cerebellar progenitors exhibit substantial self-organizing potential for generating a polarized structure reminiscent of the early human cerebellum at the first trimester

    Vulnerability of Purkinje Cells Generated from Spinocerebellar Ataxia Type 6 Patient-Derived iPSCs

    Get PDF
    SummarySpinocerebellar ataxia type 6 (SCA6) is a dominantly inherited neurodegenerative disease characterized by loss of Purkinje cells in the cerebellum. SCA6 is caused by CAG trinucleotide repeat expansion in CACNA1A, which encodes Cav2.1, α1A subunit of P/Q-type calcium channel. However, the pathogenic mechanism and effective therapeutic treatments are still unknown. Here, we have succeeded in generating differentiated Purkinje cells that carry patient genes by combining disease-specific iPSCs and self-organizing culture technologies. Patient-derived Purkinje cells exhibit increased levels of full-length Cav2.1 protein but decreased levels of its C-terminal fragment and downregulation of the transcriptional targets TAF1 and BTG1. We further demonstrate that SCA6 Purkinje cells exhibit thyroid hormone depletion-dependent degeneration, which can be suppressed by two compounds, thyroid releasing hormone and Riluzole. Thus, we have constructed an in vitro disease model recapitulating both ontogenesis and pathogenesis. This model may be useful for pathogenic investigation and drug screening

    Identification and Characterization of Sulfated Carbohydrate-Binding Protein from <i>Lactobacillus reuteri</i>

    Get PDF
    <div><p>We previously purified a putative sulfated-galactosylceramide (sulfatide)-binding protein with a molecular weight of 47 kDa from the cell surface of <i>Lactobacillus reuteri</i> JCM1081. The aim of this study was to identify the 47-kDa protein, examine its binding to sulfated glycolipids and mucins, and evaluate its role in bacterial adhesion to mucosal surfaces. By cloning and sequencing analysis, the 47-kDa protein was identified as elongation factor-Tu (EF-Tu). Adhesion properties were examined using 6×Histidine-fused EF-Tu (His<sub>6</sub>-EF-Tu). Surface plasmon resonance analysis demonstrated pH-dependent binding of His<sub>6</sub>-EF-Tu to sulfated glycolipids, but not to neutral or sialylated glycolipids, suggesting that a sulfated galactose residue was responsible for EF-Tu binding. Furthermore, His<sub>6</sub>-EF-Tu was found to bind to porcine gastric mucin (PGM) by enzyme-linked immunosorbent assay. Binding was markedly reduced by sulfatase treatment of PGM and in the presence of acidic and desialylated oligosaccharide fractions containing sulfated carbohydrate residues prepared from PGM, demonstrating that sulfated carbohydrate moieties mediated binding. Histochemical staining revealed similar localization of His<sub>6</sub>-EF-Tu and high iron diamine staining in porcine mucosa. These results indicated that EF-Tu bound PGM via sulfated carbohydrate moieties. To characterize the contribution of EF-Tu to the interaction between bacterial cells and PGM, we tested whether anti-EF-Tu antibodies could inhibit the interaction. Binding of <i>L. reuteri</i> JCM1081 to PGM was significantly blocked in a concentration-dependent matter, demonstrating the involvement of EF-Tu in bacterial adhesion. In conclusion, the present results demonstrated, for the first time, that EF-Tu bound sulfated carbohydrate moieties of sulfated glycolipids and sulfomucin, thereby promoting adhesion of <i>L. reuteri</i> to mucosal surfaces.</p></div

    Atomic-Scale Insights into the Phase Behavior of Carbon Dioxide and Water from 313 to 573 K and 8 to 30 MPa

    No full text
    We performed molecular dynamics (MD) simulations of CO2 + H2O systems by employing widely used force fields (EPM2, TraPPE, and PPL models for CO2; SPC/E and TIP4P/2005 models for H2O). The phase behavior observed in our MD simulations is consistent with the coexistence lines obtained from previous experiments and SAFT-based theoretical models for the equations of state. Our structural analysis reveals a pronounced correlation between phase transitions and the structural orderliness. Specifically, the coordination number of Ow (oxygen in H2O) around other Ow significantly correlates with phase changes. In contrast, coordination numbers pertaining to the CO2 molecules show less sensitivity to the thermodynamic state of the system. Furthermore, our data indicate that a predominant number of H2O molecules exist as monomers without forming hydrogen bonds, particularly in a CO2-rich mixture, signaling a breakdown in the hydrogen bond network’s orderliness, as evidenced by a marked decrease in tetrahedrality. These insights are crucial for a deeper atomic-level understanding of phase behaviors, contributing to the well-grounded design of CO2 injection under high-pressure and high-temperature conditions, where an atomic-scale perspective of the phase behavior is still lacking
    corecore