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SUMMARY

Spinocerebellar ataxia type 6 (SCA6) is a dominantly
inherited neurodegenerative disease characterized
by loss of Purkinje cells in the cerebellum. SCA6 is
caused by CAG trinucleotide repeat expansion in
CACNA1A, which encodes Cav2.1, a1A subunit of
P/Q-type calcium channel. However, the pathogenic
mechanism and effective therapeutic treatments are
still unknown. Here, we have succeeded in gener-
ating differentiated Purkinje cells that carry patient
genes by combining disease-specific iPSCs and
self-organizing culture technologies. Patient-derived
Purkinje cells exhibit increased levels of full-length
Cav2.1 protein but decreased levels of its C-terminal
fragment and downregulation of the transcriptional
targets TAF1 and BTG1. We further demonstrate
that SCA6 Purkinje cells exhibit thyroid hormone
depletion-dependent degeneration, which can be
suppressed by two compounds, thyroid releasing
hormone and Riluzole. Thus, we have constructed
an in vitro disease model recapitulating both onto-
genesis and pathogenesis. This model may be useful
for pathogenic investigation and drug screening.

INTRODUCTION

Spinocerebellar ataxia (SCA) is a group of hereditary ataxic

neurodegenerative disorders without effective treatment or

cure. The patients progressively lose physical control while re-

taining full mental capacity. SCA6 is an autosomal-dominant dis-

ease characterized by the loss of Purkinje cells, the sole output

neurons of the cerebellar cortex (Matilla-Dueñas et al., 2014;

Leto et al., 2015). SCA6 is caused by expansion of polyglutamine

(polyQ)-encoding CAG trinucleotide repeat in CACNA1A, which
1482 Cell Reports 17, 1482–1490, November 1, 2016 ª 2016 The Au
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encodes Cav2.1, a1A subunit of P/Q-type calcium channel (Zhu-

chenko et al., 1997; Ishikawa et al., 1997; Matsuyama et al.,

1997). The numbers of the repeat are 8–14 in healthy controls,

but 20–23 in the patients (R€ub et al., 2013). Patient Purkinje cells

show an abnormal morphology with irregularly shaped nuclei

and swelling of dendritic arbors (Yang et al., 2000). Despite accu-

mulating information, the pathogenic mechanisms and effective

therapeutic treatments are still unknown. To date, several animal

models and human cell line models have been reported (R€ub

et al., 2013), but whether they recapitulate the human disease

phenotypes cannot be guaranteed (Watson et al., 2015). Here,

to construct an in vitro disease model, we developed a strategy

to generate differentiated human Purkinje cells that carry SCA6

patient genes. We combined the techniques for generation of

induced pluripotent stem cells (iPSCs) from patients (Takahashi

et al., 2007) with those for differentiation of human PSCs into

cerebellar tissues and Purkinje cells (Muguruma et al., 2015)

through recapitulation of ontogenesis by the self-organizing ac-

tivity (Sasai, 2013).

With these patient-derived Purkinje cells, we first investigated

the distribution pattern of Cav2.1 protein and its C-terminal

domain (a1ACT), and found increased level of whole Cav2.1 pro-

tein while decreased level of a1ACT. We next found vulnerability

to depletion of the thyroid hormone triiodothyronine (T3) in SCA6

Purkinje cells. Finally, we demonstrated that two compounds,

thyrotropin-releasing hormone (TRH) and Riluzole suppressed

the vulnerability. Thus, we succeeded in construction of an

in vitro disease model of SCA6 for pathogenic investigation

and drug discovery.

RESULTS

Generation of Purkinje Cells from SCA6 Patient-Derived
iPSCs
Dermal fibroblasts (DF) from two independent SCA6 patients

(SCD166 with heterozygous allele and SCD162 with homozy-

gous alleles for expanded CAG repeats) and peripheral blood
thor(s).
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mononuclear cells (PBMCs) from a heterozygous patient

(SCD16) and two healthy donors (HC-4 and HC-6) were reprog-

rammed by episomal vectors (Table S1) (Nakagawa et al., 2008;

Okita et al., 2011, 2013). Both healthy donor-derived control

iPSC clones (including additional clones 201B7 and 253G1) (Ta-

kahashi et al., 2007; Nakagawa et al., 2008) and patient-derived

iPSC clones similarly showed human embryonic stem cell

(hESC)-like morphology and marker expression patterns (Fig-

ures 1A and S1A), normal karyotype (Figure S1B), and expres-

sion pattern of global and PSC-related genes (Figures S1C–

S1F). SCA6 iPSCs carried expanded CAG repeats (more than

21), while control iPSCs did normal repeats (around 11) (Figures

1B, S1G, and S1H). Thus, control and SCA6 clones share char-

acteristics of iPSCs, while maintaining the original length of CAG

repeats within CACNA1A (Figures 1B and S1G–S1I). These

iPSCs were differentiated into cerebellar neurons as previously

described (Muguruma et al., 2015; Morino et al., 2015) with

some modifications (Figure 1C). On day 35 in culture, iPSC ag-

gregates came to express the Purkinje cell progenitor marker

KIRREL2, the granule cell (GC) precursor marker ATOH1, and

the neuronal marker MAP2 in a spatially distinct manner

(Figures 1D, S1J, and S1K). At this stage, KIRREL2+ Purkinje

progenitors were purified by fluorescence-activated cell sorting

(FACS) (Figures 1E and 1F). The percentages of KIRREL2+ cells

in FACS analysis on day 35 were 21.8%–34.7% for control cells

(n = 3) and 16.3%–23.5% for SCA6-derived cells (n = 3). They

did not show large variability between the cell lines and were

within the range for human ESCs (Muguruma et al., 2015). The

purified progenitors were further differentiated into Purkinje

cells in the co-culture with GCs derived from upper rhombic lip

(Muguruma et al., 2010, 2015) (Figure 1C). Both control and

SCA6 progenitors came to express the early Purkinje cell

marker LHX5 on day 45 (Figure S1L) and Purkinje cell-specific

marker L7/PCP2 on day 49 (Figures 1G and S1M). After long-

term culture (>70 days), L7+ Purkinje cells extended elaborate

dendritic arbors and dendritic spines positive for Purkinje cell-

specific glutamate receptor GRID2 (Figures 1H and S1N). No

significant differences were observed between SCA6 and con-

trol L7+ cells in frequency (Figure 1I), dendritic field area

(Figure 1J), total length of dendrites (Figure S1O), or soma diam-

eter (Figure S1P). Thus, we established an efficient method to

generate differentiated Purkinje cells that carry genes of SCA6

patients.

Cav2.1 Protein Is Upregulated in SCA6 Purkinje Cells
Cav2.1, the protein product ofCACNA1A, is expressed in the cell

body and dendrites of mature Purkinje cells (Westenbroek et al.,
Figure 1. Generation of Differentiated Purkinje Cells from SCA6 iPSCs

(A) Morphology and marker expression pattern of iPSC clones derived from a he

17-2) patients.

(B) PCR of CAG repeats containing exon 47 of CACNA1A (top) amplified fragme

(C) Protocol for differentiation of Purkinje cells from iPSCs (see Supplemental Ex

(D) Immunostaining of iPSC aggregates on day 35.

(E and F) FACS analysis of KIRREL2+ cells in SCA6� (SCD16-2E, n = 3) and con

(G and H) Immunostaining of Purkinje cells on days 49 (G) and 75–80 (H).

(I and J) Percentage (I) and dendritic field area (J) of L7+ cells in cultures on days

Each bar represents mean ± SD from independent experiments (n R 3). The sca

significant. See also Figure S1 and Table S1.
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1995; Craig et al., 1998; Indriati et al., 2013). Cytoplasmic aggre-

gation of Cav2.1 was observed in Purkinje cells of SCA6

patients (Ishikawa et al., 1999). We confirmed these previous

findings in patient Purkinje cells. In control cultures on days

75–80, Cav2.1 was expressed as puncta uniformly distributed

throughout the L7+ Purkinje cells (Figures 2A and S2A). A similar

pattern was found in SCA6 Purkinje cells (Figures 2B, 2C, S2B,

and S2C). However, Cav2.1 signals in SCA6 Purkinje cells

were higher than those in control cells (Figures 2A–2C). The

signal levels both in dendrites and soma did not vary among

the cell lines within the same (control, heterozygous, or homozy-

gous) group, but varied among the groups (Figures 2D and 2E).

They increased as the number of allele with expanded CAG re-

peats increased. These results indicate that the Cav2.1 protein

level is correlated with the gene dosage. We analyzed global

gene expression profile on iPSC-derived Purkinje progenitors

on day 35 (Figure S2D). At this rather immature stage, homozy-

gote/control ratio of CACNA1A mRNA level was 0.95.

C-Terminal Domain of Cav2.1 Is Decreased in SCA6
Purkinje Cells
Evidence suggests that the C-terminal fragment of Cav2.1

(a1ACT) harboring the polyQ tract is involved in the pathology

of Purkinje cells (Kordasiewicz et al., 2006; Du et al., 2013).

a1ACT is translated from the bicistronic transcript, conveyed

to the nucleus, and functions as a transcription factor for TAF1

and BTG1 (Figure 3A) (Du et al., 2013). a1ACT with expanded

polyQ tract exhibits neuronal toxicity depending on the length

(Kordasiewicz et al., 2006; Du et al., 2013). We examined

a1ACT expression with a specific antibody (against 2225–2314

amino acids in human) in Purkinje cells on days 75–80 (Figures

3 and S3). In control cells, punctate signals were observed in

the nucleus, but not in the dendrites (Figures 3B, 3E, S3A, and

S3D). Signals were also observed in SCA6 Purkinje cells (Figures

3C, 3D, 3F, 3G, S3B, S3C, S3E, and S3F), but their level was

lower (Figures 3B–3G and S3A–S3F). In an opposite manner to

the whole Cav2.1 protein (Figure 2), signal level of a1ACT was

negatively correlated with the gene dosage (Figure 3H). TAF1

(Figures 3B–3D and S3A–S3C) and BTG1 (Figures 3E–3G and

S3D–S3F) show similar dependency of signal level on the gene

dosage (Figures 3I and 3J). Similar gene dosage dependency

was also detected for both mRNAs by qPCR analysis (Figures

3K and 3L). In contrast, the global gene expression analysis re-

vealed that none of the target genes (TAF1, BTG1, ATP2B2, or

GRN) differed between control and SCA6 Purkinje progenitors

on day 35 (Figure S2D), indicating that the differential expression

had not yet occurred at this rather immature stage. These results
althy donor (201B7), heterozygous (SCD166-2-3), and homozygous (SCD162-

nts of different sizes depending on the number of CAG repeats (bottom).

perimental Procedures). PCP, Purkinje cell progenitor; GC, granule cell.

trol (201B7, n = 3) iPSC aggregates on day 35.

70–80.

le bars represent 500 mm (A), 200 mm (D), 100 mm (G), and 20 mm (H). n.s., not



Figure 2. Elevated Level of Cav2.1 Protein in SCA6 Purkinje Cells

(A–C) Immunostaining of Purkinje cells derived from control (201B7) (A), het-

erozygous (SCD16-2E) (B), and homozygous (SCD162-13-2) (C) iPSCs on

days 75–80 for Cav2.1 (green) and L7 (red). The insets in the left columns were

magnified in the middle and the right columns. The scale bars represent 20 mm

(left) and 10 mm (middle and right).

(D and E) Relative fluorescence intensity of Cav2.1 normalized with the

average of control values in soma (D) and dendrites (E).

Each bar represents mean ± SD from independent experiments (n R 3).

**p < 0.01 and ***p < 0.001. See also Figure S2.
indicate that the level of a1ACT and its target proteins are

decreased in SCA6 Purkinje cells in correlation with the gene

dosage. The findings are consistent with the notion that the

expanded polyQ tract in Cav2.1 has a negative effect on the

development, maturation, or survival of Purkinje cells through

the suppression of transcriptional activity of a1ACT (Du et al.,

2013).
SCA6 Purkinje Cells Show Vulnerability to Nutrient
Depletion
As described above, it is important to confirm whether the previ-

ous findings are also found in the iPSC-derived Purkinje cells.

However, the greatest advantage of using patient Purkinje cells

lies in the identification of as-yet-unknown patient-specific phe-

notypes before the disease onset. An exploration of in vitro

disease phenotypes would be the basis for the mechanistic

investigation of pathogenesis and for drug discovery in the future

(Inoue et al., 2014; Watson et al., 2015). In this direction, we

searched for pathological phenotypes that would signify the dif-

ference between control and SCA6 Purkinje cells. It is known that

maturation and maintenance of Purkinje cells is supported by

thyroid hormone T3 (Heuer and Mason, 2003; Leto et al.,

2015), which is included in the cerebellar maturation media (Mu-

guruma et al., 2015). Thus, we imposed strict culture conditions

on differentiated Purkinje cells by depletion of T3 (Figure 4A).

Depletion for 5 days from day 70 did not exert apparent effects

on control cells (compare ‘‘none’’ and ‘‘vehicle’’ columns in Fig-

ure S4A), but caused loss of SCA6 cells (none and vehicle in Fig-

ures S4B and S4C). The number of survived cells did not differ

between the presence and absence of T3 in Purkinje cells

derived from two control lines (none and vehicle in Figures 4B

and S4D). In contrast, the numbers decreased in T3-depleted

cultures of Purkinje cells derived from two heterozygous (Figures

4C and S4E) and two homozygous (Figures 4D and S4F) lines.

Numbers of heterozygous and homozygous cells were smaller

than those of control cells (column ‘‘V’’ in Figures 4E and S4G).

We further noticed that the surviving SCA6 cells bore thick-

ened dendrites with poor arborization (none and vehicle in Fig-

ures 4F–4H). Dendritic field areas of control cells did not differ

between the presence and absence of T3 (none and vehicle in

Figures 4I and S4H), but those of heterozygous (Figures 4J and

S4I) and homozygous (Figures 4K and S4J) cells decreased by

T3 depletion. Dendritic field areas of heterozygous and homozy-

gous cells were smaller than those of control cells (column V in

Figures 4L and S4K). These results indicate that T3 depletion

caused vulnerability specifically to patient Purkinje cells.

The Vulnerability of SCA6 Purkinje Cells Is Blocked by
Thyroid Releasing Hormone and Riluzole
We further explored compounds that improve the vulnerability of

SCA6 Purkinje cells to evaluate whether this culture system

could be used as an assay system for drug discovery. We tested

several candidate compounds in T3-depleted cultures (Figures 4

and S4). Among them, TRH, which has been used for treatment

to SCA6 patients, enhanced the survival (Figures 4B–4E and

S4B–S4G) and dendritic maintenance of SCA6 Purkinje cells

(Figures 4G–4L and S4I–S4K). Another effective compound

was Riluzole (Figures 4B–4H), which is a drug used to treat

amyotrophic lateral sclerosis (ALS). Other compounds, including

SAG, a hedgehog pathway agonist supporting cell survival, and

Y-27632, a ROCK inhibitor associated with stability of dendrites,

did not show improvement (Figures 4B–4L and S4B–S4L).

Response of SCA6 Purkinje Cells to Cellular Stress
An autophagy marker LC3 was highly expressed in SCA6 cells

(Figure S4M), which is consistent with a previous report (Unno
Cell Reports 17, 1482–1490, November 1, 2016 1485
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et al., 2012). We further tested responses to various cellular

stresses. Tunicamycin, an endoplasmic reticulum stress inducer,

did not show apparent effects (Figure S4N). Bafilomycin, a

V-ATPase inhibitor, but not MG132, a proteasome inhibitor,

selectively decreased the number of SCA6 cells (Figures S4O

and S4P).

DISCUSSION

Construction of In Vitro SCA6 Models with
Patient-Derived iPSCs
Investigation of SCAs has long been hampered by unavailability

of living human Purkinje cells, which degenerate in SCA patients

(Watson et al., 2015). Alternatively, several animal models and

human cell line models have been developed (R€ub et al.,

2013), but it is uncertain whether these models recapitulate the

disease phenotypes. Recent iPSC technologies offer an oppor-

tunity to use patient-derived neurons that carry disease-specific

genes (Inoue et al., 2014). Simple cellular models with iPSC-

derived neurons certainly brought important information (Koch

et al., 2011), but they still have a limitation in studying late-onset

SCAs because degeneration occurs in mature Purkinje cells. We

have recently developed an efficient method for generation of

differentiated Purkinje cells from human PSCs (Muguruma

et al., 2015), utilizing 3D self-organizing principles (Sasai,

2013). This study, by combining the patient-derived iPSC tech-

nology and the self-organizing stem cell culture technology,

has succeeded in generation of SCA6 patient-derived Purkinje

cells. The patient-derived Purkinje cells can be used for con-

struction of in vitro disease models for SCA6.

Recapitulation of the Disease Phenotypes in
Patient-Derived Purkinje Cells
We confirmed that Cav2.1 was expressed in the cell body and

dendrites of both control and patient Purkinje cells, as reported

in the rat (Westenbroek et al., 1995; Craig et al., 1998; Indriati

et al., 2013) and human postmortem tissues (Ishikawa et al.,

1999). Ishikawa et al. (1999) observed that Purkinje cells of

SCA6 patients show cytoplasmic aggregation of Cav2.1 in the

peripheral perikarya and the proximal dendrites and its reduced

expression in the distal dendrites. We found that the level of

Cav2.1 protein was increased as the gene dosage increased

(Figures 2 and S2). However, the spatial distribution pattern of

Cav2.1 was similar among the groups. Cav2.1 was uniformly ex-

pressed as puncta distributed throughout the cells. Such

discrepancy could be due to the difference in stages of matura-

tion between still-growing rather immature iPSC-derived cells

and dying mature cells.
Figure 3. Decreased Expression of a1ACT and Its Target Molecules in

(A) Scheme for Cav2.1 C-terminal domain (a1ACT) containing polyglutamine tract

and upregulates the transcription of TAF1 and BTG1 (Du et al., 2013).

(B–G) Immunostaining of control (201B7) (B and E), heterozygous (SCD166-2-3) (C

for CALBINDIN (green), a1ACT (white), TAF1 (red in B–D), and BTG1 (red in E–G)

encircle the soma and the nucleus, respectively. The scale bars represent 20 mm

(H–J) Relative fluorescence intensity of a1ACT (H), TAF1 (I), and BTG1 (J) norma

(K and L) Amounts of TAF1 (K) and BTG1 (L) mRNAs on day 75 estimated by qP

Each bar represents mean ± SD from independent experiments (n R 3). *p < 0.0
Evidence suggests that a1ACT, bicistronically translated

Cav2.1 C-terminal fragment harboring the polyQ tract, is

involved in the pathology of Purkinje cells (Kordasiewicz et al.,

2006; Du et al., 2013; Miyazaki et al., 2016). a1ACT fragment is

conveyed to the nucleus and functions as a transcription factor

for TAF1 and BTG1 (Du et al., 2013). a1ACT exhibits neuronal

toxicity depending on the length of polyQ tract (Kordasiewicz

et al., 2006; Du et al., 2013). In this study, we found that

a1ACT was detected as puncta in the nucleus of Purkinje cells,

but not in the cytoplasm (Figure 3). Furthermore, we found that

a1ACT decreased as the gene dosage increased. These results

are consistent with the notion that the extended polyQ tract per-

turbed a1ACT expression in the nucleus by inhibition of nuclear

translocation or other mechanisms. In addition, we found that

mRNA and protein levels of TAF1 and BTG1 are also dependent

on the gene dosage and well correlated with a1ACT expression.

Our findings are consistent and complementary with the previ-

ous findings (Kordasiewicz et al., 2006; Du et al., 2013), support-

ing the hypothesis that polyQ-bearing a1ACT is involved in the

pathogenesis.

Exploration of Unknown SCA6 Phenotypes for
Pathogenic Investigation and Drug Screening
The patient Purkinje cells enable to explore unknown pheno-

types before the disease onset. Findings brought by this explo-

ration would be the basis for the mechanistic investigation of

pathogenesis and for drug discovery in the future (Inoue et al.,

2014; Watson et al., 2015). We searched for phenotypes specific

to SCA6 Purkinje cells. SCA6 cells, but not control cells, show

vulnerability to depletion of T3 as shrinkage of dendrites and

decrease in cell number. Thus, we succeeded in construction

of a T3 depletion-elicited SCA6 disease model. Although a

causal relationship between T3 and SCA6 has not been re-

ported, there aremany reports (e.g., Barnard et al., 1971) that hy-

pothyroidism in adult human is often accompanied by cerebellar

ataxia and cerebellar atrophy, which can be reversibly improved

with T3 treatment. Further studies on the hypothyroidism would

provide information on the pathogenesis.

We found that TRH and Riluzole were effective to suppress the

T3-dependent morphological changes. TRH in the hypothala-

mus stimulates the release of the thyroid stimulating hormone

(TSH) from the pituitary gland, and TSH in turn stimulates the

production of the thyroid hormone in the thyroid gland. However,

it is unknown how TRH treatment suppressed the T3-dependent

phenotypes in this in vitro model. Intriguingly, TRH receptors are

expressed in many neurons including Purkinje cells and involved

in the release of various neurotransmitters (Shibusawa et al.,

2008). TRH shows a protective effect against death of motor
SCA6 Purkinje Cells

. a1ACT translated from the bicistronic transcript is translocated to the nucleus

and F), and homozygous (SCD162-17-2) (D andG) Purkinje cells on days 75–80

. Nuclear staining was overlaid (left columns). The white and cyan dotted lines

for low power images and 10 mm for magnified images.

lized with the average of control values.

CR.

5, **p < 0.01, and ***p < 0.001. See also Figure S3.
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neurons derived from spinal muscular atrophy-specific iPSCs

(Ohuchi et al., 2016). Clinically, TRH and its derivatives are

used for treating cerebellar ataxia despite its marginal effects

in SCA patients.

We also found that Riluzole suppressed the T3-depletion-

dependent phenotypes. This finding is compatible with a clinical

finding that Riluzole treatment has a positive effect on SCA pa-

tients (Romano et al., 2015). It was reported that neuronal exci-

tation induced aggregation of the causative gene products in

neurons from Machado-Joseph disease (SCA3) patients (Koch

et al., 2011). However, ceftriaxone, an antibiotic agent that alle-

viates neuronal toxicity by promoting synaptic glutamate clear-

ance and reduction of calcium influx (Maltecca et al., 2015),

did not enhance the survival of SCA6 Purkinje cells (Figures

4B–4E, 4I–4L, and S4A–S4L). Taken together, we speculated in-

hibiting glutamate-independent neuronal excitation might con-

tribute to the positive effect of Riluzole. Further pharmacological

analysis would be necessary to reveal the mechanisms on the

actions of both TRH and Riluzole.

EXPERIMENTAL PROCEDURES

iPSC Generation

DF- and PBMC-derived iPSCs were generated as described previously (Taka-

hashi et al., 2007; Nakagawa et al., 2008; Okita et al., 2011) (See also Supple-

mental Experimental Procedures). The 201B7 and 253G1 control iPSCs were

kindly provided by Dr. Yamanaka.

Microarray Analysis

Total RNA from DF as a control was commercially available (Cell Applications).

Cy3-labeledRNA sampleswere hybridizedwith SurePrint G3Human 8x60K v3

and scanned with the Agilent SureScan Microarray Scanner (G2600D, Agilent

Technologies). The data were analyzed with Feature Extraction software

(ver. 11.5.1.1, Agilent) and Subio Platform (ver. 1.19.4941, Subio).

Compound

iPSC-derived Purkinje cells were cultured in the cerebellar maturation medium

(see Supplemental Experimental Procedures) without T3 for 5 days from cul-

ture day 70. Each compound was incubated in medium containing 10 mM

CHIR99021 (Stemgent), 1 mM SAG (Enzo), 1 mM human TRH (OriGene),

100 mM ceftriaxone (TCI), 100 nM Riluzole (TCI), or 10 mM Y-27632 (Wako).

To test responses for cellular stresses, tunicamycin (Sigma), bafilomycin A1

(Sigma), or MG132 (Cell Signaling) was used.

Intensity Quantification

Morphology and fluorescent intensity were analyzed with ImageJ (ver. 1.49,

NIH). An average fluorescence intensity of a background-subtracted image

was calculated within the region of interest for each sample. The values

were normalized with an average intensity of controls.

Statistical Analysis

All data, shown asmean ±SD obtained from independent experiments (nR 3),

were statistically analyzed with PRISM (GraphPad, ver. 6). Significance was
Figure 4. Degeneration of Dendrites in SCA6 Purkinje Cells by Nutrien

(A) Time schedule for T3 depletion and compound treatment.

(B–D) Normalized numbers of L7+ Purkinje cells from control (201B7) (B), heteroz

(E) Comparison of the cell numbers among the genotypes. The asterisks represe

(F–H) High-magnification images of L7+ Purkinje cells (green) derived from cont

presence or absence of T3 and with or without additional compounds. The scale

(I–K) Dendritic field area of control (I), heterozygous (J), and homozygous (K) Pur

(L) Comparison of the dendritic field areas among the genotypes. The asterisks

Each bar represents mean ± SD obtained from independent experiments (n R 3
tested with unpaired Student’s t test for two-group comparisons or one-way

ANOVA with Tukey-Kramer post hoc test.
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