4,127 research outputs found
Anomalous shell effect in the transition from a circular to a triangular billiard
We apply periodic orbit theory to a two-dimensional non-integrable billiard
system whose boundary is varied smoothly from a circular to an equilateral
triangular shape. Although the classical dynamics becomes chaotic with
increasing triangular deformation, it exhibits an astonishingly pronounced
shell effect on its way through the shape transition. A semiclassical analysis
reveals that this shell effect emerges from a codimension-two bifurcation of
the triangular periodic orbit. Gutzwiller's semiclassical trace formula, using
a global uniform approximation for the bifurcation of the triangular orbit and
including the contributions of the other isolated orbits, describes very well
the coarse-grained quantum-mechanical level density of this system. We also
discuss the role of discrete symmetry for the large shell effect obtained here.Comment: 14 pages REVTeX4, 16 figures, version to appear in Phys. Rev. E.
Qualities of some figures are lowered to reduce their sizes. Original figures
are available at http://www.phys.nitech.ac.jp/~arita/papers/tricirc
Periodic-orbit approach to the nuclear shell structures with power-law potential models: Bridge orbits and prolate-oblate asymmetry
Deformed shell structures in nuclear mean-field potentials are systematically
investigated as functions of deformation and surface diffuseness. As the
mean-field model to investigate nuclear shell structures in a wide range of
mass numbers, we propose the radial power-law potential model, V \propto
r^\alpha, which enables a simple semiclassical analysis by the use of its
scaling property. We find that remarkable shell structures emerge at certain
combinations of deformation and diffuseness parameters, and they are closely
related to the periodic-orbit bifurcations. In particular, significant roles of
the "bridge orbit bifurcations" for normal and superdeformed shell structures
are pointed out. It is shown that the prolate-oblate asymmetry in deformed
shell structures is clearly understood from the contribution of the bridge
orbit to the semiclassical level density. The roles of bridge orbit
bifurcations in the emergence of superdeformed shell structures are also
discussed.Comment: 20 pages, 23 figures, revtex4-1, to appear in Phys. Rev.
Flows to Schrodinger Geometries
We construct RG flow solutions interpolating AdS and Schrodinger geometries
in Abelian Higgs models obtained from consistent reductions of type IIB
supergravity and M-theory. We find that z=2 Schrodinger geometries can be
realized at the minima of scalar potentials of these models, where a scalar
charged under U(1) gauge symmetry obtains a nonzero vacuum expectation value.
The RG flows are induced by an operator deformation of the dual CFT. The flows
are captured by fake superpotentials of the theories.Comment: 19 pages, 5 figures, v2: typos corrected, references added, published
version in PR
Disturbances of both cometary and Earth's magnetospheres excited by single solar flares
In the solar wind a comet plays the role of a windvane that moves three-dimensionally in the heliomagnetosphere. Among the solar systems bodies, only comets have a wide range of inclination angles of their orbital planes to the ecliptic plane ranging from 0 to 90 deg. Therefore, observations of cometary plasma tails are useful in probing the heliomagnetospheric conditions in the high heliolatitudinal region. A comet can be compared to a polar-orbiting probe encircling the Sun. We will introduce two rare cases in which the magnetospheres of both the comet and the Earth are disturbed by a single solar flare
Susceptibility to cytotoxic T lymphocyte-induced apoptosis is a function of the proliferative status of the target
Cytotoxic T lymphocytes (CTL) kill cells by perturbing the target\u27s plasma membrane and by inducing the disintegration of the target cell\u27s DNA into oligonucleosomal fragments, a process characteristic of apoptosis. We show that the DNA fragmentation event is distinct from the membrane lysis event and is dependent on the state of target cell activation or commitment into the mitotic cycle. Quiescent cells were refractory to DNA fragmentation, but not to membrane lysis. Log phase growth, transformation with c-myc, or infection of quiescent G0 targets with herpes simplex virus-1, which induces a competent state for DNA synthesis, all enhanced target cell susceptibility to CTL-induced DNA fragmentation without altering the membrane lysis. These results suggest that G0 cells are resistant to CTL-induced apoptosis, but that entry into G1 or a G1-like state by growth factors, cellular transformation, or DNA virus infection renders them competent to enter the apoptotic pathway(s)
Inhibition of cytotoxic T lymphocyte-induced target cell DNA fragmentation, but not lysis, by inhibitors of DNA topoisomerases I and II
Cytotoxic T lymphocytes (CTL) kill their target cells via a contact-dependent mechanism that results in the perturbation of the target cell\u27s plasma membrane and the fragmentation of the target cell\u27s DNA into nucleosomal particles. The membrane disruption is presumed to be due to the action of perforin, while the DNA fragmentation is thought to be by the activation of an endogenous nuclease(s). DNA topoisomerases I and II are nuclear enzymes with inherent endonuclease activities. We have investigated their role in the CTL-induced DNA fragmentation process. We report that in CTL killing assays, the treatment of target cells with topoisomerase I and II inhibitors blocks the CTL-induced DNA fragmentation process, but not the lysis of the target cell
Nonlinear Evolution of Very Small Scale Cosmological Baryon Perturbations at Recombination
The evolution of baryon density perturbations on very small scales is
investigated. In particular, the nonlinear growth induced by the radiation drag
force from the shear velocity field on larger scales during the recombination
epoch, which is originally proposed by Shaviv in 1998, is studied in detail. It
is found that inclusion of the diffusion term which Shaviv neglected in his
analysis results in rather mild growth whose growth rate is instead
of enormous amplification of Shaviv's original claim since the
diffusion suppresses the growth. The growth factor strongly depends on the
amplitude of the large scale velocity field. The nonlinear growth mechanism is
applied to density perturbations of general adiabatic cold dark matter (CDM)
models. In these models, it has been found in the previous works that the
baryon density perturbations are not completely erased by diffusion damping if
there exists gravitational potential of CDM. With employing the perturbed rate
equation which is derived in this paper, the nonlinear evolution of baryon
density perturbations is investigated. It is found that: (1) The nonlinear
growth is larger for smaller scales. This mechanism only affects the
perturbations whose scales are smaller than , which are
coincident with the stellar scales. (2) The maximum growth factors of baryon
density fluctuations for various COBE normalized CDM models are typically less
than factor 10 for large scale velocity peaks. (3) The growth factor
depends on .Comment: 24 pages, 9 figures, submitted to Ap
Can Geometric Test Probe the Cosmic Equation of State ?
Feasibility of the geometric test as a probe of the cosmic equation of state
of the dark energy is discussed assuming the future 2dF QSO sample. We examine
sensitivity of the QSO two-point correlation functions, which are theoretically
computed incorporating the light-cone effect and the redshift distortions, as
well as the nonlinear effect, to a bias model whose evolution is
phenomenologically parameterized. It is shown that the correlation functions
are sensitive on a mean amplitude of the bias and not to the speed of the
redshift evolution. We will also demonstrate that an optimistic geometric test
could suffer from confusion that a signal from the cosmological model can be
confused with that from a stochastic character of the bias.Comment: 11 pages, including 3 figures, accepted for publication in ApJ
Fast scintillation counter system and performance
An experimental study of the fast scintillation counter (FS) system to observe a shower disk structure at Mt. Norikura is described, especially the system performance and a pulse wave-form by a single charge particles. The photomultiplier tube (PT) pulse appears at the leading edge of the main pulse. To remove this PT-pulse from the main pulse, the frame of the scintillator vessel was changed. The fast triggering system was made to decrease the dead time which came from the use of the function of the self triggering of the storage oscilloscope (OSC). To provide a new field on the multi-parameter study of the cosmic ray showers, the system response of the FS system also improved as a result of many considerations
The structure of the shower disk observed at Mt. Norikura
The structure of the EAS shower disk, the arrival time distribution of charged particles at the core of the small or middle size shower, is measured at Mt. Norikura in Japan. Four fast scintillation counters with an area of 0.25 sq m and a fast trigger system are added to the Mt. Norikura EAS array for the study
- …